• Title/Summary/Keyword: wind-sand environment

Search Result 48, Processing Time 0.02 seconds

Modelling the multi-physics of wind-blown sand impacts on high-speed train

  • Zhang, Yani;Jiang, Chen;Zhan, Xuhe
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.487-499
    • /
    • 2021
  • The wind-blown sand effect on the high-speed train is investigated. Unsteady RANS equation and the SST k-ω turbulent model coupled with the discrete phase model (DPM) are utilized to simulate the two-phase of air-sand. Sand impact force is calculated based on the Hertzian impact theory. The different cases, including various wind velocity, train speed, sand particle diameter, were simulated. The train's flow field characteristics and the sand impact force were analyzed. The results show that the sand environment makes the pressure increase under different wind velocity and train speed situations. Sand impact force increases with the increasing train speed and sand particle diameter under the same particle mass flow rate. The train aerodynamic force connected with sand impact force when the train running in the wind-sand environment were compared with the aerodynamic force when the train running in the pure wind environment. The results show that the head car longitudinal force increase with wind speed increasing. When the crosswind speed is larger than 35m/s, the effect of the wind- sand environment on the train increases obviously. The longitudinal force of head car increases 23% and lateral force of tail increases 12% comparing to the pure wind environment. The sand concentration in air is the most important factor which influences the sand impact force on the train.

Effect of hanging-type sand fence on characteristics of wind-sand flow fields

  • Cheng, Jian-jun;Lei, Jia-qiang;Li, Sheng-yu;Wang, Hai-feng
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.555-571
    • /
    • 2016
  • A hanging-type sand-retaining wall is a very common sand-blocking fence structure used to prevent sand movement. This type of wall is widely used along the Qinghai-Tibet and Gobi desert railways in Xinjiang, Western China. To analyze the characteristics of wind-sand flow fields under the effect of such a sand fence structure, a wind tunnel test and a field test were carried out. The wind tunnel test showed the zoning characteristics of the flow fields under the effect of the hanging-type sand-retaining wall, and the field test provided the sediment transport data for effective wind-proof interval and the sand resistance data in the front and behind the sand-retaining wall. The consistency of the wind-sand flow fields with the spatial distribution characteristic of wind-carried sand motion was verified by the correspondences of the acceleration zone in the flow field and the negative elevation points of the percentage variations of the sand collection rate. The spatial distribution characteristic of the field sand collection data further showed the spatial structural characteristic of the sandy air currents under the action of the hanging-type sand-retaining wall and the sand resistance characteristic of the sand-retaining wall. This systematic study on the wind-sand flow fields under the control of the hanging-type sand-retaining wall provides a theoretical basis for the rational layout of sand control engineering systems and the efficient utilization of a hanging-type sand-retaining wall.

A Study on Wind-drift Sand Deposition by Vegetation and Coastal Debris using a Wind Tunnel Test (식생 및 해안표착물에 의한 비사 퇴적 풍동실험 연구)

  • Je, Young Jun;Jeon, Yong Ho;Yoon, Han Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.163-170
    • /
    • 2013
  • The correlation and interaction mechanisms between marine debris and the vegetation zone were studied on the Jinu-do natural beach of the Nakdong river estuary. Laboratory wind tunnel experiments were carried out under the wind-field and bottom-sand conditions using wind tunnel test equipment to investigate the sedimentation characteristics of wind-drift sand deposition around marine debris and the vegetation zone. The major environmental factors/loads considered in this study were the motion of sand by wind on the beach, deposition of marine debris, and change in the vegetation zone/line. When the marine debris was installed in the wind tunnel, deposition at the front of the structure appeared first by wind action, and then deposition developed from behind at 70% of the front ground level. In contrast, in the case of vegetation, the deposition phenomenon appeared first from behind the vegetation zone/line, and was 60% higher than the front. When the height of the debris and vegetation was the same, the required experimental time to bury the vegetation completely was about twice that of the marine debris.

Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named serish

  • Shabani, Khosro;Bahmani, Maysam;Fatehi, Hadi;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.535-548
    • /
    • 2022
  • Recently, the construction industry has focused on eco-friendly materials instead of traditional materials due to their harmful effects on the environment. To this end, biopolymers are among proper choices to improve the geotechnical behavior of problematic soils. In the current study, serish biopolymer is introduced as a new binder for the purpose of sand improvement. Serish is a natural polysaccharide extracted from the roots of Eremurus plant, which mainly contains inulins. The effect of serish biopolymer on sand treatment has been investigated through performing unconfined compressive strength (UCS), California bearing ratio (CBR), as well as wind erosion tests. The results demonstrated that serish increased the compressive strength of dune sand in both terms of UCS and CBR. Also, wind erosion resistance of the sand was considerably improved as a result of treatment with serish biopolymer. A microstructural study was also conducted via SEM images; it can be seen that serish coated the sand particles and formed a strong network.

Numerical study on temporal resolution of meteorological information for prediction of Asian dust (황사의 확산예측을 위한 기상정보의 시간해상도에 관한 수치연구)

  • Lee Soon-Hwan;Gwak Eun-Young;Ryu Chan-Su;Moon Yun-Seob
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.891-902
    • /
    • 2004
  • In order to predict air pollution and Yellow-sand dispersion precisely, it is necessary to clarify the sensitivity of meteorological field input interval. Therefore numerical experiment by atmospheric dynamic model(RAMS) and atmospheric dispersion model(PDAS) was performed for evaluating the effect of temporal and spatial resolution of meteorological data on particle dispersion. The results are as follows: 1) Base on the result of RAMS simulation, surface wind direction and speed can either synchronize upper wind or not. If surface wind and upper wind do not synchronize, precise prediction of Yellow-sand dispersion is strongly associated with upwelling process of sand of particle. 2) There is no significant discrepance in distribution of particle under usage of difference temporal resolution of meteorological information at early time of simulation, but the difference of distribution of particles become large as time goes by. 3) There is little difference between calculated particles distributions in dispersion experiments with high temporal resolution of meteorological data. On the other hand, low resolution of meteorological data occur the quantitative difference of particle density and there is strong tendency to the quantitative difference.

An Experimental Study on the Applicability of Converter Slag by wind fracture as Vertical Drains (풍쇄전로슬래그의 연직배수재 활용성에 관한 실험적 연구)

  • Kwon, Jung-Keun;Im, Jong-Chul;Park, Lee-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1132-1141
    • /
    • 2006
  • Recently it is difficult to secure sand used in the improvement of soft ground, and so it is necessary to find alternative materials. For this reason many researchers are studying and trying to find new substitute materials. One of the materials is considered as converter slag by wind fracture which is generated in the production of steel manufacture by electric circuit. It is environment friendly since it is a recycled material and economical since it is cheaper than sand. To investigate the applicability of converter slag by wind fracture as the alternative material such as vertical drains, it is necessary to check the drainage effect of this in the field construction. In order to attain an successful design it is important to predict problems encountered in field construction. Accordingly, in this study the laboratory test was executed under different conditions in advance of applying of the field. A total of 4 cases including slag, sand+slag, pack slag and sand as vertical drains was conducted, and at the base of the laboratory test the field test was executed and analyzed.

  • PDF

The Features Associated with the Yellow Sand Phenomenon Observed in Korea in Wintertime (겨울철 황상 현상의 특징)

  • 전영신;김지영;부경온;김남욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.487-497
    • /
    • 2000
  • Spring time is a favorable season to be easily observed the Yellow Sand phenomenon in East Asia. In particular most of the phenomenon tend to occur in April. However, Yellow Sand phenomenon was observed from almost the whole country of Korea in winter of 1966, 1977 and 1999. The features of the synoptic weather pattern in the source regions, air stream flow between the source region and Korea, the measurement of TSP concentration, aerosol size distribution, and chemical composition of snow samples associated with Yellow Sand phenomenon were investigated. The result showed the characteristic evolutionary feature of the synoptic system associated with Yellow Sand phenomena, that is, a strong low level wind mobilized the dust within 2 or 3 days before Yellow Sand phenomenon being observed in Seoul. The wind was remarkably intensified in the source region on January 24, 1999 under the strong pressure gradient, A trajectory analysis showed that the Yellow Sand particle could be reached to Korea within 2 days from the source region, Gobi desert, through Loess plateau and Loess deposition region. The TSP concentration at the top of Kwanak mountain during the Yellow Sand phenomenon is abruptly increasing than the monthly mean concentration. The size resolved number concentration of aerosols ranging from 0.3 to 25${\mu}{\textrm}{m}$ was analyzed during Yellow Sand episode. It was evident that aerosols were distinguished by particles in the range of 2-3 ${\mu}{\textrm}{m}$ to result in the abrupt increase in January 1999, After Yellow Sand phenomenon, there was heavy snow in Seoul. By the analysis of snow collected during that time, it was observed that both the Ca(sup)2+ concentration and pH were increased abnormally compared to those in the other winter season.

  • PDF

Assessment of Long-Range Transport of Atmospheric Pollutants using a Trajectory Model with the puff Concept (퍼프 유적선모델에 의한 대기오염물질의 장거리수송량의 평가)

  • 정관영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.167-177
    • /
    • 1996
  • To investigate the source-receptor relationships aerosol model has been used to simulate the distribution behavior of the yellow sand. Data for meteorological fields were obtained by Meso-scale Analysis and Prediction Model System/Seoul National University (MAPMS/SNU) for five days (10-14 April 1988). To obtain the distributions of concentration of yellow sand,the aerosol model has been modified to allow quantifications of relative concentration distributions of yellow sand. Source regions of yellow sand were delineated by soil maps of China and emission rate as a function of wind stress(Westphal et al., 1987). Using 3-dimensional wind fields the backward trajectories from 3 receptor grids at the layer of .sigma. =0.95, 0.9, 0.85, 0.8 were calculated. In order to facilitate quantitative assessment of source-receptor relationships, it was assumed that the perturbations in along-trajectory and cross-trajectory proceed linearly with time, in accord with Gaussian distribution characteristics. On the basis of this assumption, the probability fields were calculated from every grid point with source strength 1. Using these probability fields and emission retes, the potential contributions of upstream sources along the trajectories were estimated. The results of this study indicate that the application of trajectory modeling is useful in investigating the quantitative relationship between source and receptor regions.

  • PDF

Dynamics of Air Pollutants during the Yellow Sand Phenomena (黃砂現象의 大氣汚染物質 動態에 關한 硏究)

  • 李敏熙;黃奎浩;金恩植;平井英二;丁子哲治;宮崎元一
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.183-191
    • /
    • 1990
  • To check the possible transportation of gaseous air pollutants with the particles of yellow sand in the movement of air masses during the Yellow Sand Phenomenon, the concentrations of such air pollutants as TSP, $SO_2, CO, NO_x, O_3 and N-CH_4$, and wind wpeed were measured during the Yellow Sand Phenomenon (April 8 $\sim 10, 1990) and they were compared with those during the normal times in Korea. Meanwhile dust color of the samples during the Yellow Sand Phenomenon was the color of sand, that during the normal times was dark-brown. The concentrations of dusts; water soluble components, and metallic components of soil-originated elements during the Yellow Sand Phenomenon were higher than those during the normal times. While the metallic components in the dusts during the Yellow Sand Phenomenon were from soil-originated elements, those during the normal times were of both soiloriginated and sea-originated elements. The change of hourly concentrations of air pollutants showed bi-modal distribution during the two periods. Generally, the concentration levels of air pollutants during the Yellow Sand Period were higher than those during the normal times. Although similarity was observed in the primary sources, differences were observed in the dynamics of the secondary sources due to chemical reactions of the air pollutants during the two periods.

  • PDF

Review of the Functional Properties and Spatial Distribution of Coastal Sand Dunes in South Korea (우리나라 해안사구 분포 현황과 기능특성에 관한 고찰)

  • Yoon, Han-Sam;Park, So-Young;Yoo, Chang-Ill
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.2
    • /
    • pp.180-194
    • /
    • 2010
  • Coastal sand dunes are dynamic and fragile buffer zones of sand and vegetation where the following three characteristics can be found: large quantities of sand, persistent wind capable of moving sand, and suitable locations for sand to accumulate. The functional properties of coastal sand dunes include the roles in sand storage, underground freshwater storage, coastal defense, and ecological environment space, among others. Recently, however, the integrity of coastal dune systems has been threatened by development, including sand extraction for the construction industry, military usage, conversion to golf courses, the building of seawalls and breakwaters, and recreational facility development. In this paper, we examined the development mechanisms and structural/format types of coastal sand dunes, as well as their functions and value from the perspective of coastal engineering based on reviews of previous researches and a case study of a small coastal sand dune in the Nakdong river estuary. Existing data indicate that there are a total of 133 coastal sand dunes in South Korea, 43 distributed on the East Sea coast (32 in the Gangwon area, and 11 in Gyeongsangbuk-do), 60 on the West Sea coast (4 in Incheon and Gyeonggi-do, 42 in Ghungcheongnam-do, 9 in Jellabuk-do, and 5 in Jellanam-do), and 30 on the South Sea coast (16 in Jellanam-do, 2 in Gyeongsangnam-do, and 12 in Jeju).