• Title/Summary/Keyword: wind-driven circulation

Search Result 42, Processing Time 0.251 seconds

Simplified Numerical Model of the Wind-driven Circulation with Emphasis on Distribution of the Tuman River Solid Run-off

  • Vanin, N.S.;Moshchenko, A.V.;Feldman, K.L.;Yurasov, G.I.
    • Ocean and Polar Research
    • /
    • v.22 no.2
    • /
    • pp.81-90
    • /
    • 2000
  • Supposed construction of a large port in the mouth of Tuman River requires careful examination of possible unfavorable ecological consequences for the Far Eastern Federal Marine Reserve. Since the Tuman River is the largest source of suspended material and possible contaminants flowing into the sea, and in order to understand how this material is allocated in the coastal zone, analyses are needed to check possible pathways of water transport and circulation system in the region. Linearized shallow water equations were used for numerical simulation of the wind-driven circulation to the north off the Tuman River mouth. The model results satisfactorily agreed with in situ data. The model circulation patterns are largely dependent on the wind direction and are conformed by the distribution of bottom sediments, and by the location of organic carbon and some pollutants accumulation zones. The most unfavorable situation for the Marine Reserve is the case of the southwesterly wind; even with quite moderate wind, the waters polluted by the run-off from the Tuman River can attain the south section of the Marine Reserve during the diurnal period.

  • PDF

Numerical Prediction of Tidal Current due to the Density and Wind-driven Current in Yeong-il Bay (하구밀도류와 취송류가 영일만 해수유동에 미치는 영향)

  • YOON HAN-SAM;LEE IN-CHEOL;RYU CHEONG-RO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.22-28
    • /
    • 2004
  • This study constructed a 3D real-time numerical model that predicts the water quality and movement characteristics of the inner bay, considering the characteristics of the wind-driven current and density current in estuaries, generated by the river discharge from the Hyeong-san river and oceanic water of the Eastern sea. The numerical model successfully calculated the seawater circulation current of Yeong-il Bay, using the input conditions oj the real-time tidal current, river discharge, and weather conditions during March 2001. This study also observed the wind-driven current and density current in estuaries that are effected by the seawater circulation pattern of the inner bay. We investigated and analyzed each impact factor, and its relationship to the water quality of Yeong-il bay.

On the Wintertime Wind-driven Circulation in the Yellow Sea and the East China Sea : Part I. Effect of Tide-induced Bottom Friction (황해.동중국해의 겨울철 취송 순환에 대하여: Part I. 조류에 의한 저면 마찰력의 영향)

  • Lee, Jong-Chan;Kim, Chang-Shik;Jung, Kyung-Tae;Jun, Ki-Cheon
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.361-371
    • /
    • 2003
  • The effect of bottom friction on the steady wind-driven circulation in the Yellow Sea and the East China Sea (YSECS) has been studied using a two-dimensional numerical model with and without tidal forcing. Upwind flow experiment in YSECS has also been carried out with a schematic time variation in the wind field. The surface water setup and circulation pattern due to steady wind forcing are found to be very sensitive to the bottom friction. When the effects of tidal currents are neglected, the overall current velocities are overestimated and eddies of various sizes appear, upwind flow is formed within the deep trough of the Yellow Sea, forming a part of the topographic gyre on the side of Korea. When tidal forcing is taken into account, the wind-induced surface elevations are smoothed out due to the strong tide-induced bottom friction, which is aligned almost normal to the wind stresses; weak upwind flow is farmed in the deep trough of the Yellow Sea, west and south of Jeju. Calculation with wind forcing only through a parameterized linear bottom friction produces almost same results from the calculation with $M_2$ tidal forcing and wind forcing using a quadratic bottom friction, supporting Hunter (1975)'s linearization of bottom friction which includes the effect of tidal current, can be applied to the simulation of wind-driven circulation in YSECS. The results show that steady wind forcing is not a dominant factor to the winter-time upwind flow in YSECS. Upwind flow experiment which considers the relaxation of pressure gradient (Huesh et al. 1986) shows that 1) a downwind flow is dominant over the whole YSECS when the northerly wind reaches a maximum speed; 2) a trend of upwind flow near the trough is found during relaxation when the wind abates; 3) a northward flow dominates over the YSECS after the wind stops. The results also show that the upwind flow in the trough of Yellow Sea is forced by a wind-induced longitudinal surface elevation gradient.

The Impact of Southern Ocean Thermohaline Circulation on the Antarctic Circumpolar Current Transport

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.291-299
    • /
    • 2006
  • The observed ocean barotropic circulation is not completely explained by the classical wind-driven circulation theory. Although it is believed that the thermohaline forcing plays a role in the ocean barotropic circulation to some degree, how much the thermohaline forcing contributes to the barotropic circulation is not well known. The role of thermohaline circulation driven by changes in temperature and salinity in the Southern Ocean (SO) water masses on the Antarctic Circumpolar Current (ACC) transport is investigated using a coupled ocean - atmosphere - sea ice - land surface climate system model in a Last Glacial Maximum (LGM) context. Withthe implementation of glacial boundary conditions in a coupled model, a substantial increase in the ACC transport by about 75% in 80 years of integration and 25% in the near LGM equilibrium is obtained despite of the decreases in the magnitude of wind stresses over the SO by 33% in the transient time and 20% in the near-equilibrium. This result suggests that the increase in the barotropic ACC transport is due to factors other than the wind forcing. The change in ocean thermohaline circulation in the SO seems to play a significant role in enhancing the ACC transport in association with the change in the bottom pressure torque.

  • PDF

An Optimization Approach to the Wind-driven Ocean Circulation Model (해수순환모델에 대한 최적화 방법)

  • KIM Jong-Kyu;RYU Cheong-Ro;CHANG Sun-duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.787-793
    • /
    • 1994
  • It has been demonstrated for the finite-difference ocean circulation model that the problem of uncertain forcing and input data can be tackled with an optimization techniques. The uncertainty problem in interesting flow properties is exploring a finite difference ocean circulation model due to the uncertainty in the driving boundary conditions. The mathematical procedure is based upon optimization method by the conjugate gradient method using the simulated data and a simple barotropic model. An example for the ocean circulation model is discussed in which wind forcing and the steady-state circulation are determined from a simulated stream function.

  • PDF

An optimization strategy in wind-driven circulation with uncertain forcing problem off the southeastern coastal waters of Korea (한국 남동해역 취송순환문제에서 바람응력에 대한 최적화 연구)

  • Kim Jong-Kyu;Kim Heon-Tae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.35-42
    • /
    • 2001
  • We demonstrated the importance of initial estimates of model parameters and the utility of an optimization approach of the uncertain forcing of wind-driven circulation off the southeastern coastal waters of Korea. The wind stress represents the upper boundary condition in this model and enters in the model equation as a forcing term in the numerical formalism. The wind field contributes to maintain the almost time-independent distribution of the upper layer thickness feature in a north-south direction and negative wind stress curl to maintain the formation of warm eddy off the southeastern coastal waters of Korea. Elucidated is the variational characteristics of the East Korean Warm Current due to the variations of the zonally averaged wind stress (southward transport) from the seasonal variations of the meridional transport by the Ekman transport.

  • PDF

Numerical Analysis of Wind Driven Current and Mesoscale Air Flow in Coastal Region with Land Topography (육상지형을 고려한 연안해역에서의 중규모 기상장과 취송류에 관한 수치해석)

  • Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.23-29
    • /
    • 2006
  • A quasi depth-varying mathematical model for wind-generated circulation in coastal areas, expressed in terms of the depth-averaged horizontal velocity components and free surface elevation was validated and used to understand the diurnal circulation process. The wind velocity is considered as a dominant factor for driving the current. In this paper, three-dimensional numerical experiments that included the land topography were used to investigate the mesoscale air flaw over the coastal regions. The surface temperature of the inland area was determined through a surface heat budget consideration with the inclusion of a layer of vegetation.A series of numerical experiments were then carried out to investigate the diurnal response of the air flaw and wind-generated circulation to various types of surface inhomogeneities.

Numerical Simulation of the Circulation and Suspended Materials Movement in the Yellow Sea and the East China Sea by Tidal Residual and Wind-Driven Current (조석잔차류와 해상풍에 의한 황해와 동중국해의 해수 순환과 부유물 이동 모델 연구)

  • Jeon, Hye-Jin;An, Hui-Soo
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.529-539
    • /
    • 1997
  • The circulations and movement of suspended materials by tidal residual current and seasonal surface wind in the Yellow Sea and the East China Sea are investigated by using a 2-dimensional barotropic model and a particle tracing technique. The tidal residual current is relatively strong around the south and west coast of Korea including the Cheju Island and southern coast of China. The current has a maximum speed of 10 cm/s in the vicinity of Cheju Island with a clockwise circulation. General tendency of the current, however, is to flow eastward along the southern coast of Korea. At the east coast of China from Shanghai to Tunghai, it also shows a eastward flow toward the South Sea of Korea. The anticyclonic circulation formed by wind-driven current and southward current prevails along the coast of Korea in the winter season(from October to April) when northerly wind is dominant. In summer(represented by July), however, the cyclonic circulation appears due to the influence of southerly wind. Suspended materials are advected by tidal residual current and wind-driven current. The long period(ten days) displacement by wind-driven current is bigger than that by tidal residual current. However, the tidal residual current would have the more important role for the advection of the suspended material considering longer period more than several months.

  • PDF

A Three-Dimensional Finite Element Model of Water Circulation (물의 순환에 관한 3차원 유한요소 모형)

  • 정태성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 1998
  • A three-dimensional numerical model of water circulation has been developed. The model employs the equations on $\sigma$-coordinate and the finite element method for numerical integration. To verify accuracy of the model, a series of numerical experiments have been conducted. The experiments include wind-driven currents in an one-dimensional channel, wind-driven currents in a square lake, and tidal current distributions in Masan-Jinhae Bay. The simulation results showed good agreements with the analytic solutions for wind-driven current and the field data sets in Masan-Jinhae Bay. The model can be used widely for modeling of water circulation in the waters with a complex geometry.

  • PDF

Wind-Driven Circulation Using a Curvilinear Hydrodynamic Three-Dimensional Model (곡선형격자 삼차원 수치모형을 이용한 바람에 의한 물의 순환)

  • Lee, Hye-Keun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1994
  • A curvilinear hydrodynamic three-dimensional model is presented for the study of wind-driven circulation in a shallow lake. Numerical results are compared with field data. Thermal stratification effects were found to be critical to the successful simulation of circulation under increasing winds. When there ate insufficient meteorological data, the so-called inverse method can be used for the estimation of heat flux.

  • PDF