• 제목/요약/키워드: wind power generation

검색결과 919건 처리시간 0.038초

LSTM을 활용한 풍력발전예측에 영향을 미치는 요인분석 (Analysis on Factors Influencing on Wind Power Generation Using LSTM)

  • 이송근;최준영
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.433-438
    • /
    • 2020
  • Accurate forecasting of wind power is important for grid operation. Wind power has intermittent and nonlinear characteristics, which increases the uncertainty in wind power generation. In order to accurately predict wind power generation with high uncertainty, it is necessary to analyze the factors affecting wind power generation. In this paper, 6 factors out of 11 are selected for more accurate wind power generation forecast. These are wind speed, sine value of wind direction, cosine value of wind direction, local pressure, ground temperature, and history data of wind power generated.

400W 수직형 풍력발전시스템의 개발에 관한 연구 (A Study on Development of Wind Power 400W Generation System with Vertical axis Type)

  • 윤정필;최장균;차인수
    • 신재생에너지
    • /
    • 제2권3호
    • /
    • pp.23-30
    • /
    • 2006
  • Need developments of substitute energy to solve problem of global warming by excess use of fossil energy, excess discharge of carbon dioxide. wind power generation system is all-important energy in next generation as clean energy. Environmental pollution of wind power generation system is not exhausted entirely. And, electric-power generation system cost is cheap than other energy. Wind Generation system that is supplied much present is most horizontality style blade structure. But, Horizontal style structure is serious noise and there is problem in stability of blade. We designed special blade solve to this problem. And, manufactured vertical axis wind power generation system because using blade. Also, developed assistance power generator to increase driving efficiency ago wind power generation. We expect this devices that is such cover shortcoming of wind power generation system.

  • PDF

부유식 해상풍력 유지보수 관리 적용을 위한 발전손실량 특성 분석 (Power Generation Loss Characteristics Analysis for O&M Management of Floating Offshore Wind Farms)

  • 문성빈;안송강;성원경;오영진
    • 풍력에너지저널
    • /
    • 제13권1호
    • /
    • pp.5-14
    • /
    • 2022
  • Currently, the Korean government is driving the construction of large-scale floating offshore wind farms to increase domestic renewable energy generation and decrease carbon emissions. In offshore wind farms, maintenance approaches can be limited more often than onshore wind farms by marine weather conditions (wave height, etc.). Therefore, maintenance planning optimization is more important to minimize maintenance costs and power generation loss by downtime. Additionally, the power generation of a wind farm is affected by wind speed as well as wind direction because of the wake effect, so it is possible that power generation loss by downtime is also dependent on combinations of weather conditions (wind speed and direction) and the location of wind turbines for maintenance. In this study, the effects of the wind conditions and the locations of tripped wind turbines on power generation loss were explored for a hypothetical floating offshore wind farm. In order to calculate the power generation of a wind farm, a wake effect calculator was developed based on Jensen's formula. Then, a simple methodology of determining maintenance priorities that minimize power generation loss was proposed.

풍력 발전 특성을 고려한 순간전압강하 평가 (Voltage Sag Assessment Considering the Characteristics of Wind Power)

  • 송영원;박창현
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1571-1577
    • /
    • 2012
  • This paper presents a method for assessing the voltage sag performance of power system involving wind power generation. Wind power generation is considered as one of the most desirable renewable energy sources. However, wind power generation have uncertain energy output and it is difficult to control the output. The existing methods of voltage sag assessment are not reflected the characteristics of wind power generation. Therefore, in order to more accurately assess the voltage sag performance, the probability of wind power operation is evaluated. In this paper, the probability is determined by combining the wind speed model with the output curve of wind turbine. The probability of wind power operation is reflected as a parameter in voltage sag assessment. The proposed method can provide more accurate results of voltage sag assessment for the case involving the wind power generation.

복합발전 풍력-디젤 하이브리드 시스템 설치 지역의 전력품질 분석 (Power Quality Analysis of Wind-Diesel Hybrid Generation System Installation Area)

  • 안해준;김현구;김석우;고석환;장길수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.539-541
    • /
    • 2009
  • A severely cold weather condition of King Sejong Station, Antarctica becomes a very severe condition for an installation/operation of wind generation system. When the existing wind generation system works, it may cause a damage and destruction of wind generation system and can bring about big problems in terms of the power quality. Accordingly, it is essential to obtain technologies for the installation and operation of small wind generation system for the polar region's wind generation, and to assess and demonstrate the performance in the severely-cold environment and the polar wind generation system's development, supplementation, alteration. Also, as the available power of King Sejong Station, Antarctica, the diesel generator has been mainly used, and the wind generator has been used in the hybrid form. Wind generation and diesel generation has the different load following control each other. In the wind generation, the generated power very rapidly changes according to the change of the velocity of the wind. On the other hand, the diesel generation shows very gentle change in the velocity of output. Therefore, the study is intended to analyze the 10kw small wind generator-diesel generator's power quality of King Sejong Station, Antarctica, which is the hybrid system installation area.

  • PDF

풍력단지의 발전량 추계적 모형 제안에 관한 연구 (Development of a Stochastic Model for Wind Power Production)

  • 류종현;최동구
    • 경영과학
    • /
    • 제33권1호
    • /
    • pp.35-47
    • /
    • 2016
  • Generation of electricity using wind power has received considerable attention worldwide in recent years mainly due to its minimal environmental impact. However, volatility of wind power production causes additional problems to provide reliable electricity to an electrical grid regarding power system operations, power system planning, and wind farm operations. Those problems require appropriate stochastic models for the electricity generation output of wind power. In this study, we review previous literatures for developing the stochastic model for the wind power generation, and propose a systematic procedure for developing a stochastic model. This procedure shows a way to build an ARIMA model of volatile wind power generation using historical data, and we suggest some important considerations. In addition, we apply this procedure into a case study for a wind farm in the Republic of Korea, Shinan wind farm, and shows that our proposed model is helpful for capturing the volatility of wind power generation.

기상관측자료를 이용한 제주도 풍력단지의 풍력발전량 예측에 관한 연구 (A Study on Estimation of Wind Power Generation using Weather Data in Jeju Island)

  • 류구현;김기수;김재철;송경빈
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2349-2353
    • /
    • 2009
  • Due to high oil price and global warming of the earth, investments for renewable energy have been increased a lot continuously. Specially, wind power has been received a great attention in the world. In order to construct a new wind farm, forecasting of wind power generation is essential for a feasibility test. This paper investigates wind velocity measurement data of Gosan weather station which located in Hankyung of Jeju island. This paper presents results of estimation of wind power generation using digital weather forecast provided from Korea meteorological administration, and the accuracy of the wind power forecasting by comparison between forecasted data and actual wind power data.

저 풍속 발전 시스템 구현에 관한 연구 (A Study on the realrization of Low Wind Generation)

  • 지명국;공태우;배철환;정한식;정효민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.891-896
    • /
    • 2001
  • The recent technology of Wind Power Generation in the world is rapidly developed better than the past time. The extra-large wind power generation system of the MW-class and the large wind power generation system of the hundreds kW-class were developed and became for common use. So, this paper is basic experiment for wind power generation at low wind, and aimed for small wind power generation system.

  • PDF

계통연계 풍력 및 태양광발전시스템 고조파 영향 검토 (Harmonic Impact Studies of Grid-Connected Wind Power and PV Generation Systems)

  • 이상민;정형모;유권종;이강완
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2185-2191
    • /
    • 2009
  • Wind power and photovoltaic(PV) generation systems are the fastest growing sources of renewable energy. The nonlinear devices, such as power electronic converter or inverter, of wind power and PV generation systems are the source of harmonics in power systems. The harmonic-related problems can have significant detrimental effects in the power system, such as capacitor heating, data communication interference, rotating equipment heating, transformer heating, relay misoperation and switchgear failure. There is a greater need for harmonic analysis that can properly maintain the power quality. By measuring harmonics of existing wind power and PV generation systems as harmonics modeling, the studies were made to see the harmonic impact of grid-connected wind power and PV generation systems.

Real-Time Peak Shaving Algorithm Using Fuzzy Wind Power Generation Curves for Large-Scale Battery Energy Storage Systems

  • Son, Subin;Song, Hwachang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.305-312
    • /
    • 2014
  • This paper discusses real-time peak shaving algorithms for a large-scale battery energy storage system (BESS). Although several transmission and distribution functions could be implemented for diverse purposes in BESS applications, this paper focuses on a real-time peak shaving algorithm for an energy time shift, considering wind power generation. In a high wind penetration environment, the effective load levels obtained by subtracting the wind generation from the load time series at each long-term cycle time unit are needed for efficient peak shaving. However, errors can exist in the forecast load and wind generation levels, and the real-time peak shaving operation might require a method for wind generation that includes comparatively large forecasting errors. To effectively deal with the errors of wind generation forecasting, this paper proposes a real-time peak shaving algorithm for threshold value-based peak shaving that considers fuzzy wind power generation.