• Title/Summary/Keyword: wind data measurement

Search Result 367, Processing Time 0.023 seconds

A remote long-term and high-frequency wind measurement system: design, comparison and field testing

  • Zhao, Ning;Huang, Guoqing;Liu, Ruili;Peng, Liuliu
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.21-29
    • /
    • 2020
  • The wind field measurement of severe winds such as hurricanes (or typhoons), thunderstorm downbursts and other gales is important issue in wind engineering community, both for the construction and health monitoring of the wind-sensitive structures. Although several wireless data transmission systems have been available for the wind field measurement, most of them are not specially designed for the wind data measurement in structural wind engineering. Therefore, the field collection is still dominant in the field of structural wind engineering at present, especially for the measurement of the long-term and high-frequency wind speed data. In this study, for remote wind field measurement, a novel wireless long-term and high-frequency wind data acquisition system with the functions such as remote control and data compression is developed. The system structure and the collector are firstly presented. Subsequently, main functions of the collector are introduced. Also novel functions of the system and the comparison with existing systems are presented. Furthermore, the performance of this system is evaluated. In addition to as the wireless transmission for wind data and hardware integration for the collector, the developed system possesses a few novel features, such as the modification of wind data collection parameters by the remote control, the remarkable data compression before the data wireless transmission and monitoring the data collection by the cell phone application. It can be expected that this system would have wide applications in wind, meteorological and other communities.

Characteristics Analysis and Reliability Verification of Nacelle Lidar Measurements (나셀 라이다 측정 데이터 특성 분석 및 신뢰성 검증)

  • Shin, Dongheon;Ko, Kyungnam;Kang, Minsang
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • A study on Nacelle Lidar (Light detection and ranging) measurement error and the data reliability verification was carried out at Haengwon wind farm on Jeju Island. For measurement data error processing, the characteristics of Nacelle Lidar measurements were analyzed by dividing into three parts, which are weather conditions (temperature, humidity, atmosphere, amount of precipitation), mechanical movement (rotation of wind turbine blades, tilt variation of Nacelle Lidar) and Nacelle Lidar data availability. After processing the measurement error, the reliability of Nacelle Lidar data was assessed by comparing with wind data by an anemometer on a met mast, which is located at a distance of 200m from the wind turbine with Nacelle Lidar. As a result, various weather conditions and mechanical movement did not disturb reliable data measurement. Nacelle Lidar data with availability of 95% or more could be used for checking Nacelle Lidar wind data reliability. The reliability of Nacelle Lidar data was very high with regression coefficient of 98% and coefficient of determination of 97%.

Development of an Analysis Software for the Load Measurement of Wind Turbines (풍력발전기의 하중 측정을 위한 해석 소프트웨어의 개발)

  • Gil, Kyehwan;Bang, Je-Sung;Chung, Chinwha
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.20-29
    • /
    • 2013
  • Load measurement, which is performed based on IEC 61400-13, consists of three stages: the stage of collecting huge amounts of load measurement data through a measurement campaign lasting for several months; the stage of processing the measured data, including data validation and classification; and the stage of analyzing the processed data through time series analysis, load statistics analysis, frequency analysis, load spectrum analysis, and equivalent load analysis. In this research, we pursued the development of an analysis software in MATLAB to save labor and to secure exact and consistent performance evaluation data in processing and analyzing load measurement data. The completed analysis software also includes the functions of processing and analyzing power performance measurement data in accordance with IEC 61400-12. The analysis software was effectively applied to process and analyse the load measurement data from a demonstration research for a 750 kW direct-drive wind turbine generator system (KBP-750D), performed at the Daegwanryeong Wind Turbine Demonstration Complex. This paper describes the details of the analysis software and its processing and analysis stages for load measurement data and presents the analysis results.

The Development of Offshore Wind Resource Measurement System and Remote Monitoring System (해상기상관측 시스템 및 실시간 원격 모니터링시스템 개발)

  • Ko, Suk-Whan;Jang, Moon-Seok;Lee, Youn-Seop
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.72-77
    • /
    • 2011
  • The purpose for installation of offshore weather station is a measurement of wind resources and so on. If weather station is operated, it will be possible to analysis for wind resource and arrangement of wind farm by using measured data. In this paper, we carried out the development of offshore wind resource measurement system for measuring offshore wind resource. Also, In order to monitor for real-time wind data with 1 Hz, we installed the wireless transmission system. All wind characteristic data are sent to the server PC through the this system is connected outport of DataLogger. Transmitted wind data were used in order to look at in the Web-page and tablet PC on a real time basis in a graph. In this paper, we will introduce about the wind resource measurement and remote monitoring system that is the result of study.

The study of load measurement on U50 wind turbine (U50 풍력발전기 하중측정 실증연구)

  • Cho, Joo-Suk;Hong, Hyeok-Soo;Bang, Jo-Hyug;Park, Jin-Il;Ryu, Ji-Yune
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.114-122
    • /
    • 2007
  • This paper addresses the measurement of structural loads on the Unison U50 wind turbine. The load measurement are carried out to determine the actual loads acting on a wind turbine. This is needed not only the certification process but also improving the technical development for prototype wind turbine. The measurement system is consists of measuring load, operating quantities and meteorological signal. All data that occur during the operating of a WT are stored the data acquisition system automatically. With using the measured data, load spectrum and equivalent load are evaluated according to IEC61400-13 "Measurement of mechanical loads".

  • PDF

The study of load measurement on U50 wind turbine (U50 풍력발전기 하중측정 실증연구)

  • Cho, Joo-Suk;Hong, Hyeok-Soo;Bang, Jo-Hyug;Park, Jin-Il;Ryu, Ji-Yune;Gil, Kye-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.341-344
    • /
    • 2007
  • This paper addresses the measurement of structural loads on the Unison U50 wind turbine. The load measurement are carried out to determine the actual loads acting on a wind turbine. This is needed not only the certification process but also improving the technical development for prototype wind turbine. The measurement system is consists of measuring load, operating quantities and meteorological signal. All data that occur during the operating of a WT are stored the data acquisition system automatically. With using the measured data, load spectrum and equivalent load are evaluated according to IEC61400-13 "Measurement of mechanical loads".

  • PDF

A wireless high-frequency anemometer instrumentation system for field measurements

  • Huang, Guoqing;Peng, Liuliu;Su, Yanwen;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.739-749
    • /
    • 2015
  • Field measurement of wind characteristics is of great significance for the wind engineering community. High-frequency anemometers such as ultrasonic anemometers are widely used to obtain the high-frequency fluctuating wind speed time history. However, conventional instrumentation systems may suffer from low efficiency, non-real time transmission and higher maintenance cost, and thus are not very appropriate in the field measurement of strong winds in remote areas such as mountain valleys. In order to improve the field measurement performance in those remote areas, a wireless high-frequency anemometer instrumentation system for field measurement has been developed. In this paper, the architecture of the proposed instrumentation system, and measured data transmission and treatment will be presented firstly. Then a comparison among existing instrumentation systems and the proposed one is made. It shows that the newly-developed system has considerable advantages. Furthermore, the application of this system to the bridge site located in the mountain valley is discussed. Finally, typical samples of measured data from this area are presented. It can be expected that the proposed system has a great application potential in the wind field measurement for remote areas such as the mountainous or island or coastal area, and hazardous structures such as ultra-voltage transmission tower, due to its real-time transmission, low cost and no manual collection of data and convenience.

Assessment of Wind Resources Predictions using Commercial Codes in Complex Terrains of Korea (WAsP과 WindSIM의 풍력자원예측성 평가)

  • Lee, Won-Seon;Hwang, Yoon-Seok;Paek, In-Su;Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.173-180
    • /
    • 2009
  • Simulations using two well-known commercial codes, WAsP and WindSIM, were performed to predict the wind resources in complex terrains of Korea. The predictions from the codes were compared with the measured data. Cross predictions were performed for two closely located measurement sites. The results from WindSIM were found to be more accurate than those from WAsP. The predictions for wind velocity and direction in five different sites of complex terrain from WAsP and WindSIM were also compared. It was found that if the self prediction of the wind velocity and direction from WAsP is close to the measured wind data, the discrepancies between WAsP results and WindSIM results are also close.

  • PDF

Comparative Validation of WindCube LIDAR and Remtech SODAR for Wind Resource Assessment - Remote Sensing Campaign at Pohang Accelerator Laboratory (풍력자원평가용 윈드큐브 라이다와 렘텍 소다의 비교.검증 - 포항가속기 원격탐사 캠페인)

  • Kim, Hyun-Goo;Chyng, Chin-Wha;An, Hae-Joon;Ji, Yeong-Mi
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • The remote-sensng campaign was performed at the Pohang Accelerator Laboratory where is located in a basin 6km inland from Yeongil Bay. The campaign aimed uncertainty assessment of Remtech PA0 SODAR through a mutual comparison with WindCube LIDAR, the remote-sensing equipment for wind resource assessment. The joint observation was carried out by changing the setup for measurement heights three times over two months. The LIDAR measurement was assumed as the reference and the uncertainty of SODAR measurement was quantitatively assessed. Compared with LIDAR, the data availability of SODAR was about half. The wind speed measurement was fitted to a slope of 0.94 and $R^2$ of 0.79 to the LIDAR measurement. However, the relative standard deviation was about 17% under 150m above ground level. Therefore, the Remtech PA0 SODAR is judged to be unsuitable for the evaluation of wind resource assessment and wind turbine performance test, which require accuracy of measurement.

Wind field simulation over complex terrain under different inflow wind directions

  • Huang, Wenfeng;Zhang, Xibin
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.239-253
    • /
    • 2019
  • Accurate numericalsimulation of wind field over complex terrain is an important prerequisite for wind resource assessment. In this study, numerical simulation of wind field over complex terrain was further carried out by taking the complex terrain around Siu Ho Wan station in Hong Kong as an example. By artificially expanding the original digital model data, Gambit and ICEM CFD software were used to create high-precision complex terrain model with high-quality meshing. The equilibrium atmospheric boundary layer simulation based on RANS turbulence model was carried out in a flat terrain domain, and the approximate inflow boundary conditions for the wind field simulation over complex terrain were established. Based on this, numerical simulations of wind field over complex terrain under different inflow wind directions were carried out. The numerical results were compared with the wind tunnel test and field measurement data for land and sea fetches. The results show that the numerical results are in good agreement with the wind tunnel data and the field measurement data which can verify the accuracy and reliability of the numerical simulation. The near ground wind field over complex terrain is complex and affected obviously by the terrain, and the wind field characteristics should be fully understood by numerical simulation when carrying out engineering application on it.