• Title/Summary/Keyword: wetland loss

Search Result 51, Processing Time 0.03 seconds

Suggestions for Protecting and Preserving the Level II Endangered Species Nannophya pygmaea in Korea (멸종위기야생생물 II급인 꼬마잠자리(Nannophya pygmaea)와 서식처의 보호 및 보존 조치에 관한 제언)

  • Oh, Ki Cheol;Ro, Ki Hyun;Lee, Hwang Goo;Kim, Dong Gun
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.545-548
    • /
    • 2017
  • Nannophya pygmaea (commonly known as the scarlet dwarf dragonfly) was designated as an endangered species, level II, by the Ministry of Environment of Korea in 1994; it has been used as a flagship species for the protection and preservation of wetlands. Over 25 sites in Korea have been identified as the habitat of Nannophya pygmaea. However, most of these habitats have proven to be unstable, and there have been subsequent changes in the assemblage structure and organization. Most habitats changed to become grasslands or plain ground, and now only five habitats remain. Although efforts have been made to protect the Nannophya pygmaea as an endangered species, their habitat loss has increased, caused by natural succession and drought. Therefore, we need to make stronger protections in the preservation manual of level II endangered species, particularly Nannophya pygmaea, and its native habitats in Korea.

Comparison of Three Land Cover Classification Algorithms -ISODATA, SMA, and SOM - for the Monitoring of North Korea with MODIS Multi-temporal Data

  • Kim, Do-Hyung;Jeong, Seung-Gyu;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • The objective of this research was to investigate the optimal land cover classification algorithm for the monitoring of North Korea with MODIS multi-temporal data based on monthly phenological characteristics. Three frequently used land cover classification algorithms, ISODATA1), SMA2), and SOM3) were employed for this study; the land cover categories were forest, grass, agricultural, wetland, barren, built-up, and water body. The outcomes of the study can be summarized as follows. First, the overall classification accuracy of ISODATA, SMA, and SOM was 69.03%, 64.28%, and 73.57%, respectively. Second, ISODATA and SMA resulted in a higher classification accuracy of forest and agricultural categories, but SOM performed better for the built-up area, bare soil, grassland, and water. A possible explanation for this difference would be related to the difference of sensitivity against the vegetation activity. This would be related to the capability of SOM to express all of their values without any loss of data by maintaining the topology between pixels of primitive data after classification, while ISODATA and SMA retain limited amount of data after normalization process. Third, we can conclude that SOM is the best algorithm for monitoring the land cover change of North Korea.

Uptake Patterns of N and P by Reeds (Phragmites australis) of Newly Constructed Shihwa Tidal Freshwater Marshes (시화지구 인공습지에서 갈대에 의한 질소 및 인 흡수)

  • 노희명;최우정;이은주;윤석인;최영대
    • The Korean Journal of Ecology
    • /
    • v.25 no.5
    • /
    • pp.359-364
    • /
    • 2002
  • This study was conducted to examine the seasonal pattern of N and P uptake by reeds (Phragmites australis) planted in newly constructed Shihwa tidal freshwater marshes. Reed and soil samples were collected from the wetland periodically from June 2000 to May 2002. Reed samples were analyzed for dry weight and content of N and P Soil organic matter content and salinity were also determined. Dry matter content of reed increased during the growing season but decreased in the fall and winter. However, this seasonal pattern was not so evident in the second year. In particular, throughout the measurement period, dry matter content of reed was lowest at a site showing high soil salinity. Regression analyses between dry matter content of reed and soil EC(1:5) suggested that dry matter content per unit square meter would decrease by 1.5 kg with every 1 dS m/sup -1/ increase in soil EC(1:5). The amount of N and P assimilated by reed significantly decreased from the fall and was lowest in the spring. Net decrease in N content from reed during the fall and next spring was calculated as 34.5 and 24.6 g m/sup -2/ in the first and second years, respectively, while the corresponding P loss was 4.0 and 1.8 g m/sup -2/. Soil organic mailer content increased in the fall and winter, but decreased in the spring and summer. The results of this study suggested that the removal of N and P by reed would be considerable during the growing season but the nutrients taken up by reeds would return as detritus to the marshes in the fall and winter. Based on the results of the study, therefore, the harvest of the reed at the latter part of the growth would be recommended to prevent further water quality degradation. However, the long-term effects of reed harvest needs further study.

Optimal environmental range for Juncus effusus, an important plant species in an endangered insect species (Nannopya pygmaea) habitat in Korea

  • Yoon, Ji-Hyun;Kim, Heung-Tae;Nam, Jong-Min;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.223-235
    • /
    • 2011
  • Juncus effusus is mostly found in freshwater wetlands and is widely used for landscaping and creating artificial wetlands due to its high ecological value. J. effusus tends to dominate during the early stage (3-10 years) of the second succession in abandoned paddy fields. This study focused on the environmental characteristics of J. effusus to create habitat for an endangered species, Nannopya pygmaea, which lives in wetlands dominated by J. effusus. Considering the distribution of J. effusus and N. pygmaea, 63 quadrats at eight wetlands were investigated between May and June 2006 during the critically dry period. Fifty-three species from 28 families co-occurred with J. effusus, and Persicaria thunbergii was the most abundant (63.5%). The optimal ranges of distribution (ORD) for the water variables were water depth, -2 to 10 cm; dissolved oxygen, 0.99-3.55 mg/kg, conductivity (CON), 23.40-115.40 ${\mu}s/cm$, total dissolved solid, 12.53-57.60 mg/L; pH, 5.00-6.87; $K^+$, 0.11-1.46 mg/L; $Ca^{2+}$, 1.53-5.85 mg/L; $Na^+$, 3.16-7.47 mg/L; $Mg^{2+}$, 0.11-1.96 mg/L; $NO_3$-N, < 0.001-0.072 mg/L; $NH_4$-N, 0.005-0.097 mg/L; and $PO_4$-P, 0.006-0.047 mg/L. ORDs for the soil variables were water content, 1.05-2.96%; loss-on ignition method (LOI), 5.07-7.81%; CON, 23.70-59.70 ${\mu}s/cm$; pH, 4.40-5.16; extracted (e) $K^+$, 4.34-15.73 cmol/kg; $eCa^{2+}$, 31.56-191.56 cmol/kg; $eNa^+$, < 0.01-2.61 cmol/kg; eMg, 0.04-19.82 cmol/kg; $eNO_3$-N, 0.514-1.175 mg/kg; $eNH_4$-N, 0.033-0.974 mg/kg, $ePO_4$-P, 0.491-11.552 mg/kg; total nitrogen, 0.016-0.200%; and total carbon, 1.06-2.37%. The appearance of rush during early succession indicated relatively lower levels of these physicochemical parameters, and that ORDs should be maintained for the J. effusus community.

Categorizing the Landcover Classes of the Satellite Imagery for the Management of the Nonpoint Source Pollutions (비점오염원 수문유출모형에 적용 가능한 위성영상의 토지피복 분류항목 설정)

  • Seo, Dong-Jo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.465-474
    • /
    • 2009
  • To measure the amount of nonpoint source pollution, some efforts are tried to utilize satellite imagery. But, as the factors for water models do not relate with the landcover categories for satellite imagery, satellite imagery are adapted to roughly classified thematic map or used only for the image interpretation. The purpose of this study is to establish the landcover categories of satellite imagery to relate with the water models. To establish the categories of the landcover for the water models, it was investigated to get main factors of water flow models for the nonpoint source pollution and to review the existing study and the classification system. For this result, it was convinced that the basic unit on the nonpoint source pollution, landcover coefficients of SCS Curve Number, the crop factor of Universal Soil Loss Equation, Manning's roughness coefficients are the useful parameters to extract information from the satellite imagery. After the setup the categories for the landcover classification, it was finally defined from the consultation of the water model specialist. Woopo wetland watershed was selected to the study area because it is a representative wetland in Korea and needs the management system for nonpoint source pollution. There were used Landsat ETM Plus and SPOT-5 satellite imagery to assess the result of the image classification.

A Study on Utilization Plan and Assessment of Ecological Carrying Capacity of Asan City - Focused on the Ecological Footprint Survey - (아산시 생태환경용량 평가를 통한 도시계획 활용방안 연구 - 생태발자국을 중심으로 -)

  • Joo, YongJoon;Sagong, Hee;Lee, SangYoon
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.523-532
    • /
    • 2017
  • Environmental problems in urban spaces tend to result from excessive use of resources faster than the ecosystem can recover itself. In order to address this problem, city or municipal governments tend to devise plans and policies to lead development within their ecological carrying capacity. This study computes ecological capacity of Asan city, Province Chung Nam, South Korea through applying the concept of ecological footprint. This study finds ecological footprint and deficit of Asan city in 2015 were 5.12 and -4.99, respectively. From 2001 to 2015, Asan city experienced not only an 81% increase of ecological footprint, but also a 190% increase of ecological deficit. Such results suggest that Asan city has experienced a steady increase of resource consumption due to population increase and urban growth, indicating that loss of ecological spaces such as green space, farmland, wetland and so on restoring the ecosystem has been accelerated. Therefore, in order to promote sustainable development, Asan city should not only protect green space, farmland, wetland, and so on but also create urban growth plans and policies taking into account its environmental capacity of the city. This study provides suggestions for Asan city to lead urban growth within its environmental capacity by applying ecological deficit.

The Comparative Studies on the Avian Diversity in Protected Horticulture Complex and Paddy Wetland (시설원예단지와 논습지의 조류서식 및 다양성 비교분석 연구)

  • SON, Jinkwan;LEE, Siyoung;KANG, DongHyeon;PARK, Minjung;YUN, Sungwook;KIM, Namchoon;KONG, Minjae;CHOI, Duckkyu
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.4
    • /
    • pp.57-67
    • /
    • 2018
  • We examined the impact of paddy wetland's avian-diversity on the development of the protected horticulture complex. The results of this study were made to propose ecological protected horticulture complex and development direction suitable for avian habitat. The total number of species surveyed was analyzed as 1168 individuals in 11 orders 26 families and 36 generic 48 species. Type average was analyzed as paddy $17.25{\pm}4.83$ species and $74.50{\pm}38.08$ individuals, glass $10.00{\pm}0.82$ species and $46.75{\pm}2.06$ individuals, single $13.75{\pm}7.27$ species and $59.50{\pm}35.34$ individuals, multi $8.75{\pm}0.96$ species and $36.75{\pm}9.29$ individuals. Paddy showed higher species diversity than protected horticulture complex. The average number of species surveyed for one year was glass $14{\pm}2.83$, multi $12{\pm}1.41$, single $18{\pm}11.31$, and paddy $26{\pm}11.31$. The diversity difference was identified as paddy> single> glass and multi. Statistical analysis showed statistical difference of Ciconiiformes. Development of protected horticulture complex causes loss of avian habitat. The diversity index was glass $1.73{\pm}0.07$, multi $1.68{\pm}0.14$, single $1.91{\pm}0.47$, and paddy $2.29{\pm}0.17$. Paddy has a higher species diversity than the protected horticulture complex. For the purpose of ecological protected horticulture complex, detention ponds, artificial wetlands and habitats should be reflected in the design. This should be applied to reclamation areas or large-scale protected horticulture complexes.

Analysis of Land Cover Change of Coastal Sand Dunes in Yangyang Using Aerial Photographs (항공사진을 활용한 양양 해안사구 지역의 토지피복 변천 분석)

  • Han, Gab-Soo;Kim, Kyeong-Nam
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.107-118
    • /
    • 2010
  • The purpose of this study was to set the boundary of the coastal sand dunes and to analyze the change characteristics of land cover types using aerial photographs on Osan and Dongho coastal sand dunes in Yangyang. The boundaries of sand dunes were established using digital soil map, and land cover maps were made for each year using aerial photographs. As results of analysis, both beach and farmland areas have been decreased, since 1974 and forest area was relatively increased due to planting and forest growth. Facilities and bare land have been greatly increased since 1992. Loss of wetland, and beach due to these changes had an impact on the ecosystem destruction of sand dunes.

Effective Mitigation Measures for the Loss of Tidal Flat in Coastal Development Projects (해안개발사업으로 인한 갯벌매립의 효율적 저감방안)

  • Maeng, Jun Ho;Hong, Jae-Sang
    • Journal of Wetlands Research
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • Tidal flat, classified as wetland of coastal zone, is critical transitional zone connecting sea with land, and fulfills a variety of functions necessary for maintaining coastal ecosystem. Although it is critical to protect and strengthen its functions of coastal wetlands, tidal flat has been mainly viewed as areas for development in Korea. Therefore, this study provides with the effective mitigation measures so as to minimize adverse impacts of tidal flat reclamation projects on the proper environmental values. So far, coastal development has not considered as important the fact that development site consists of tidal flat in site selection. Therefore, large scale of tidal flats was abused. Problems were emerged only after tidal flat development was already planned. The original plan had to be revised. To rectify the problem, impacts of development on the environment need to be discussed based on the initial development planning. Particularly, sandy beaches, rocky shores and shallow areas, underwater forest including seagrass beds as well as the tidal flat in good condition should be excluded from development site.

  • PDF

The Reducing Effects Analysis of Floods through Washland Construction in Hwapocheon Basin (화포천 유역의 천변저류지 조성을 통한 홍수 저감효과 분석)

  • Jeong, Young-Won;Kim, Young-Do;Park, Jae-Hyun;Yoon, Byung-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1489-1493
    • /
    • 2009
  • The disaster with many casualties every year by floods, and the economic loss will occur in Korea. The establishment and the recovery measures are necessary. In this research, we analyzed the effect for reducing flood by making washland in flood season, where is used as the wetland in non-flood season in Hwapocheon basin of Nakdong River, Korea. We prepared draingage of inner basin for flood in the past because the water elevation of Hwapocheon is lower than the water elevation of the Nakdong River. On the other hand, now a days, drainage capacity of the expansion and change of the height of the embankment have limitations, because of the increase in torrential rains. In this study, HEC-RAS is used for the unsteady flow routing for the effectiveness analysis of flood level mitigation in flood season. This analysis was performed according to the scenarios of washland construction location and its scale.

  • PDF