• 제목/요약/키워드: welding quality

Search Result 912, Processing Time 0.026 seconds

In-process Weld Quality Monitoring by the Multi-layer Perceptron Neural Network in Ultrasonic Metal Welding (초음파 금속용접 시 다층 퍼셉트론 뉴럴 네트워크를 이용한 용접품질의 In-process 모니터링)

  • Shahid, Muhammad Bilal;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.89-97
    • /
    • 2022
  • Ultrasonic metal welding has been widely used for joining lithium-ion battery tabs. Weld quality monitoring has been an important issue in lithium-ion battery manufacturing. This study focuses on the weld quality monitoring in ultrasonic metal welding with the longitudinal-torsional vibration mode horn developed newly. As the quality of ultrasonic welding depends on welding parameters like pressure, time, and amplitude, the suitable values of these parameters were selected for experimentation. The welds were tested via tensile testing machine and weld strengths were investigated. The dataset collected for performance test was used to train the multi-layer perceptron neural network. The three layer neural network was used for the study and the optimum number of neurons in the first and second hidden layers were selected based on performances of each models. The best models were selected for the horn and then tested to see their performances on an unseen dataset. The neural network models for the longitudinal-torsional mode horn attained test accuracy of 90%. This result implies that proposed models has potential for the weld quality monitoring.

A Study on the Seam tracking and Control of the Welding Quality Using a Infrared sensor (적외선 센서를 이용한 용접선 추적 및 용접품질 모니터링에 관한 연구)

  • Kim I.S.;Son J.S.;Kim H.H.;Seo J.H.;Kim I.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.301-302
    • /
    • 2006
  • In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

Intelligent quality estimation of automobile steel sheet during Resistance spot welding (자동차용 강판(TRIP강)에 대한 저항 점 용접 품질 평가 알고리즘 개발)

  • 김태형;이세헌
    • Proceedings of the KWS Conference
    • /
    • 2001.10a
    • /
    • pp.184-186
    • /
    • 2001
  • Quality estimation of the weld has been one of the important issues in RSW which is a main process of the sheet metal fabrication in auto-body industry. It was well known that among the various welding process variables, dynamic resistance has a close relation with nugget formation. In this study, a new quality estimation algorithm is developed with the primary dynamic resistance measured at welding machine timer. For this, Back propagation algorithm of neural network is used.

  • PDF

Residual Stress and Fracture Analysis of Thick Plate for Partial Penetration Multi-Pass Weldment

  • Kim, Seok;Shim, Yong-Lae;Song, Jung-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1033-1039
    • /
    • 2002
  • Partial penetration welding joint refers to the groove weld that applies to the one side welding which does not use steel backing and to both side welding without back gouging, that is, the partial penetration welding joint leaves an unwelded portion at the root of the welding area. In this study, we analyzed the residual stress and fracture on the thick metal plates that introduced the partial penetration welding method. According to the above-mentioned welding method, we could draw a conclusion that longitudinal stress and traverse stress occurred around the welding area are so minimal and do not affect any influence. We also performed the fracture behavior evaluation on the partial penetration multi pass welding with 25.4 mm thick plate by using the J-integral, which finally led us the conclusion that the partial penetration multi-pass welding method is more applicable and effective in handling the root face with less than 6.35 mm.

Welding Characteristics of SCP1 on CW Nd:Yag Laser (CW Nd:YAG 레이저에 의한 SCP1의 용접특성)

  • Shin, Byung-Heon;Yoo, Young-Tae;Shin, Ho-Jun;Yun, Chul-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.35-43
    • /
    • 2007
  • Laser welding of metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for metals with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the butt welding, the welding quality of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1325W of the laser power, and 1.4m/min of laser welding speed.

A Study on the effect of welding wire diameter on the welding quality detection (용접 와이어 직경이 용접 상태 검출에 미치는 영향)

  • Ryu, Jeong Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Using the welding current and voltage signal processing, we have studied the influence that the diameter of the welding wire to the welding quality detection. For the experiments, We have analyzed the signal with respect to large and small artificially a gap between base materials than the welding wire. In this experiment, the 1.2 mm diameter of the welding wire was used, and distance between the welding base materials was respectively 1.0 mm and 2.0 mm. In the welding with a large defect than the diameter of the welding wire it was able to detect a change in the welding current and welding voltage. But it could not detect a change in the welding current and welding voltage in the welding has a small defect than the welding wire diameter.

Multi-thin plate welding characteristics of Low Carbon Steel for Ni-MH battery of using Continuous Wave Nd:YAG laser (연속파 Nd:YAG 레이저를 이용한 Ni-MH전지용 저탄소강의 다층 박판 용접 특성)

  • Yang, Yun-Seok;Hwang, Chan-youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.720-728
    • /
    • 2011
  • Lap joint welding conducts low carbon steel plates using a 2.0kW continuous wave Nd:YAG laser beam. The specimen is composed of thin plate of 20 sheets. Process Variables contain two controlled parameters of the laser power and the welding speed. In order to quantitatively examine the characteristics of the lap welding, the welding quality of the cut section, stain-stress behavior, and the hardness of the welded part are investigated. The weld width difference between the top and the bottom because the welding speed is increased. The reason, cooling rate is decreased because of fast welding speed. When the heat input is higher, larger volume of the base metal will melt and the welding heat has longer time to conduct into the bottom from the top. The microstructure and tensile properties of the joints are investigated in order to analyze the effects of heat input on the quality of laser welded specimen. From the results of the investigation, We observe that welding quality is good for the laser power of 1800W, and laser welding speed from 1.8m/min to 2.2m/min.

Friction Welding of Dissimilar Plunger Materials and Its Real Time Evaluation by AE (플런저용 강재의 이종재 마찰용접과 AE에 의한 실시간 평가)

  • Kong, Y.S.;Jo, S.K.;Kim, Y.D.;Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.48-53
    • /
    • 2002
  • Plunger (piston rod) materials are used in high-pressure condition. So STD11 is the essential material to build this plunger. However, it costs more to make a plunger by using only STD11 than using the welding of STD11 to SCM440 and other dissimilar material. And it has been difficult to weld this sort of dissimilar materials. They could be unstable in the quality by the conventional arc welding. And also they have a lot of technical problems in manufacturing. But, by the friction welding technique, it will be able to be made without such problems. And then, on account of such reasons, we need a new approach of study on real-time quality evaluation by acoustic emission (AE) techniques as well as a domestic development of the plunger by friction welding. So that, the purpose of this study for such developments is the development of a plunger by optimizing of friction welding with more reliability and more applicability. Then, this study aimed not only to develop the optimization of friction welding of dissimilar plunger steels of STD11 to SCM440, but also to develop the application technique of the acoustic emission to accomplish an in-process real-time quality evaluation during friction welding of the plunger materials by the AE technique.

  • PDF

A Study on the Lap Joint $CO_2$ Laser Welding of Different Gauge Sheets Using ANOVA in Characteristic Zones (특징영역별 분산분석에 의한 이종두께 겹치기 $CO_2$ 레이저 용접에 대한 연구)

  • 이경돈
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.122-128
    • /
    • 2002
  • The laser welding in the automotive industries has been used widely for the butt joint of blank sheets rather than the lap joint of automotive body panels. But as a substitute far the spot welding of automotive body panels, the so called three dimensional laser welding will be important far the body panel engineers. Specially the laser welding of body panels with a smooth weld line is applied increasingly, for example, to the side panels. So far, some criteria of the laser weld quality was suggested by in-house regulations or national standards from experiences and/or rule of thumbs. In the manufacturing places, a go or no-go criterion is adopted because of the simplicity or a lack of rational criteria. It is true specially for the selection of the process parameters, which gives the basic causes for the good quality of laser welds. In this study, the effects of joint combination, gap and welding speed on the lap joint $CO_2$ laser welding of two mild steel sheets with different thicknesses are obtained through a $2{\times}3{\times}7$ factorial experiment. The results of the weld quality are statistically analysed using analysis of variance (ANOVA) and compared between two characteristic zones, which are separated by the type of sectional shapes and the level of input energy per volume. The thickness combinations are 0.8mm/1.2mm, 1.2mm/0.8mm of mild steel sheets. The welding speed covers from the deep penetration to the partial penetration. The gap size has three levels of no-gap, 0.16m, and 0.26mm. The bead width, penetration depth and input energy per volume are measured and used as the weld quality criteria.