
한국기계가공학회지 제 권 제 호, 21 , 6 , pp. 89 97(2022.05) ISSN 1598-6721(Print)

Journal of the Korean Society of Manufacturing Process Engineers, Vol. 21, No. 6, pp. 89 97(2022.06) ISSN 2288-0771(Online)

�������������������������������������������������������������������������������������������������������������

https://doi.org/10.14775/ksmpe.2022.21.06.089

Copyright The Korean Society of Manufacturing Process Engineers. This is an Open-Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 License
(CC BY-NC 3.0 http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Ultrasonic welding (USW) is remarkable application 

of ultrasonic in engineering where an ultrasonic weld 

horn vibrating at a high frequency(i.e. 20~40 kHz) is 

used to join the two or multiple sheets of metal 

foils[1]. The main component of a USW machine is 

the weld horn which is also the focus of this paper.

There are different types of a USW weld horn 
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ABSTRACT

  Ultrasonic metal welding has been widely used for joining lithium-ion battery tabs. Weld quality monitoring 

has been an important issue in lithium-ion battery manufacturing. This study focuses on the weld quality 

monitoring in ultrasonic metal welding with the longitudinal-torsional vibration mode horn developed newly. 

As the quality of ultrasonic welding depends on welding parameters like pressure, time, and amplitude, the 

suitable values of these parameters were selected for experimentation. The welds were tested via tensile 

testing machine and weld strengths were investigated. The dataset collected for performance test was used to 

train the multi-layer perceptron neural network. The three layer neural network was used for the study and 

the optimum number of neurons in the first and second hidden layers were selected based on performances 

of each models. The best models were selected for the horn and then tested to see their performances on an 

unseen dataset. The neural network models for the longitudinal-torsional mode horn attained test accuracy of 

90%. This result implies that proposed models has potential for the weld quality monitoring. 

Keywords : 용접 품질 인프로세스 Weld Quality( ), In-process Monitoring( 감시) 혼, L-T horn(L-T )Ultrasonic 
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(i.e., longitudinal(L) and longitudinal-torsional(L-T)) 

which depend on their vibration modes. There are 

different ways of achieving composite mode in weld 

horns. It can either be achieved by introduction of 

the slanting grooves to the front part of the horn[2] or 

by using coupled transducers where two sets of 

piezoelectric polarized in thickness and tangential 

directions are used[3]. In a previous study, high 

strength welds were formed with a comparatively 

shorter welding times and smaller vibration velocities 

when using L-T mode in USW[4,5]. 

Another important topic in USW is weld quality 

monitoring which is also addressed in the present 

work via neural network(NN) approach. The quality 

of an ultrasonic weld depends on the intensity of 

welding parameters like pressure, amplitude, and 

time[6] and it turns out that the suitable values of 

these parameters must be chosen to obtain an 

optimum quality weld[7]. There are many approaches 

to weld quality monitoring that were already 

introduced by others. One such approach is the use 

of dynamic resistance measured during resistance spot 

welding and NN for the quality prediction[8]. In 

another study based on thin-plate laser welding, NN 

optimized by the genetic algorithm and principal 

component analysis was used for real-time weld 

geometry prediction[9]. Another real-time weld 

monitoring algorithm was developed for the disk laser 

welding where some features were selected manually 

as an input to the classical machine learning 

algorithm(ML) algorithm support vector machines. 

Although there are many studies already focused 

on the performance of L-T modes ultrasonic devices 

in different contexts such as cutting and drilling, the 

studies based on the performance of L-T modes 

particularly in the context of the USW are very rare. 

Moreover, this study uses the multi-layer perceptron 

(MLP) neural network to predict the strength of the 

welds. This MLP which takes as input the values of 

USW parameters predicts the weld strength and has 

the potential to be used in USW quality monitoring. 

This simplest and fast NN is very helpful for USW 

monitoring given that USW is characterized by the 

shorter welding times typically on the order of 

milliseconds. 

2. Overview of MLP

As discussed in the earlier section, there are 

many approaches to weld monitoring involving the 

use of different types of ML and genetic algorithms 

but not many researchers are interested in harnessing 

the power of MLP for weld monitoring. This simple 

yet so useful ML algorithm is very fast compared 

to deep neural networks such as convolutional 

neural network(CNN) and a good fit for the 

monitoring purposes. 

2.1 Perceptron

In MLP, the perceptron is the most basic unit as 

shown in the Fig. 1 and has been referred to as the 

black box by many researchers. In essence, it’s a 

simple approximation that takes some inputs x, 

multiplies them with their weights w, add a bias b, 

and gives us output y after introduction of non- 

linearity via an activation function σ. It is given as:

                                   

                 

The weights in perceptron are the parameters that 

indicated the importance of each input value x. These 

weights keep on changing their values as we train the 

neural network. If enough training data are provided, 

a perceptron can approximate the function very well.

In MLP, many perceptron are stacked above each 

other and many layers are stacked one after another. 

By adding many layers, the complex problems can be 

approximated via training. At first, input layer holds 

all the inputs and these inputs are fed to the hidden 

layer which then performs some approximations as 

stated above. The outputs of this layer are then fed 
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to output layer as shown in the Fig. 2 below. Such a 

network in which each input from the previous layer 

is passed to each perceptron neuron) in the next layer 

is called densely connected NN. This simple MLP is 

called a shallow NN. One thing to note is that the 

input layer is usually ignored when counting the 

number of layers in MLP. As such, the network in 

Fig. 2 is a two layer network and the MLP is named 

as deep NN if it has three or more layers. 

As can be seen in Fig. 2, the activations of each 

individual layer are denoted by the letter a where the 

subscript of the ‘a’ indicates the position of each 

neuron within each layer and the superscript indicates 

the number of the layer to which the neuron belongs. 

For example, the activation shows that it is the third 

neuron in the first hidden layer. The notations for 

weights and other parameters can be interpreted in 

the same way.  

Fig. 1 The fundamental unit of MLP

Fig. 2 A shallow two layer MLP

2.2 Activation function

These are the functions that are used in neural 

networks and that computes the weighted sum of 

input and biases which then determines whether a 

specific neuron should be activated or not[10]. They 

can be linear or non-linear depending on the problem 

under consideration but the usage of non-linear 

activation functions(AFs) is more common since it 

makes the neural network to learn the parameters in 

an easier way. There are three most common AFs 

that are being used. 

2.2.1 Sigmoid function

It is a commonly used AF and also referred to as 

the logistic function. Although there are many 

variants of it such as hard sigmoid function, 

sigmoid-weighted linear units(SiLU), and derivative of 

sigmoid-weighted linear(dSiLU), the simplest one will 

be discussed here. This AF is used in feedforward 

neural network and it is differential with positive 

derivatives everywhere[11]. It is given as:




This AF is mostly used for outputs of the neural 

networks in the form of probabilities such as binary 

classification problems. The advantage of this AF is 

that they are very useful to model logistic regression 

tasks and they are used mostly in shallow neural 

networks[12].

2.2.2 Hyperbolic tangent function (tanh)

It is another function that is used in deep neural 

networks and has some variants like sigmoid function. 

This AF is zero-centered (i.e., centers all the values 

on zero) with all the values lie between -1 and 1[13]. 

It is given as:

  
 

This AF gives better performance for multi-layer 
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networks[14] and being a zero-centered function it aids 

in the back-propagation process. It is mostly used in 

speech recognition and natural language processing 

tasks. 

2.2.3 Rectified linear unit (ReLU) 

This AF has been the most popular one for deep 

architectures and it has achieved state-of-the-art results 

for many deep learning tasks[15]. It learns faster and 

is easier to optimize with gradient descent methods 

thus performs better than Sigmoid and tanh functions. 

Unlike previous two AFs, this function does not need 

to compute exponentials and addition/multiplication 

operations. It is a simple threshold function that sets 

all the values less than zero to zero unlike sigmoid 

and tanh AFs thus avoiding vanishing gradient 

problems. It is given as:

    if 〉
 if  ≤ 

Due to its popularity, faster computation, better 

optimization, and excellent performance, it was used 

in the current study. 

3. Principle of ultrasonic metal welding

Fig. 3 shows the schematics of ultrasonic metal 

welding. The converter, booster, and horn convert 

electrical energy to mechanical vibrations of 20kHz 

~40kHz. The horn transfers the mechanical vibration 

energy to the weld materials finally. When the 

amplified ultrasonic vibration is transmitted to the 

weld through the horn, strong joining is achieved by 

solid-state diffusion in the weld interfaces. 

In the ultrasonic metal welding, welding parameters 

are welding energy, clamping pressure, welding time, 

and amplitude of horn vibration. These parameters 

have great effects on the weld quality, and then 

should be appropriately selected. The welding energy 

delivered by the machine is directly proportional to 

pressure, amplitude, and time.

Fig. 3 Schematics of ultrasonic metal welding 

4. Experiments

4.1 Specimen and welding machine 

Two sheets of 0.1mm thick Cu and Ni are 

welded. The specimen was 10mm wide and 50mm 

long. The welding machine is D9800, which is 

made in DURASONIC Co. LTD., Korea. 

4.2 Ultrasonic horn

The ultrasonic horn plays a key part in ultrasonic  

welding. In our previous study[2], a composite mode 

horn with the resonance of 20kHz for ultrasonic 

welding was developed by introducing slanting 

grooves at the front mass of the horn. The L-T mode 

horn used in experiment is shown in the Fig. 4(a). 

The knurling pattern on the horn tip is shown in the 

Fig. 4(b). 

(a) Shape of L-T mode horn

a b c d

90⁰ 0.05 0.10 0.30

(b) Knurling pattern on the horn tip(mm)

Fig. 4 L-T mode horn and knurling pattern[2]
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4.3 Welding method

The L-T horn vibrates in both longitudinal and 

torsional directions. USW quality depends on many 

weld parameters such as pressure, amplitude, and 

time[6]. Three different levels of these three 

parameters were chosen for experimentation and the 

specific values of these parameters are shown in the 

Table 1.

Table 1 Welding parameters used in the experiment

Welding parameters Levels

Pressure(MPa) 0.1, 0.2, 0.3

Amplitude(µm) 16, 24, 32

Time(sec) 0.1, 0.2, 0.3

4.4 Welding strength measurement method

To measure welding strength of welded specimen, 

U-tensile tests were made using COMETECH® tensile 

testing machine with a 1kN load cell. 

As described previously, seven experiments were 

made against each welding condition. Their strength 

results were then averaged to get the mean strength 

as shown in Table 2. As can be seen, the strength 

increases with the increase in value of weld 

parameters. For example, the first three rows indicate 

that the strength increase with respect to increase in 

value of time while keeping two other parameters 

constant and the same is true for pressure and 

amplitude as well. 

5. Weld quality monitoring approach

As explained earlier, the NNs are very good at 

function approximation(i.e. mapping functions from 

some input to an output). In the current study, the 

data collected for the performance test of  L-T mode 

horn will be used for training and testing of the 

MLP. This trained MLP will have the potential of the 

USW monitoring. As the strength is an indicator of 

the weld quality, this trained NN will predict the 

strength by taking the weld parameters as its inputs.

Table 2 The mean strengths of the welds 

Pressure 

(MPa)

Amplitude 

(µm)

Time 

(sec)

Welding 

strength (N)

0.1 16 0.1 15

0.1 16 0.2 25

0.1 16 0.3 26

0.1 24 0.1 21

0.1 24 0.2 25

0.1 24 0.3 27

0.1 32 0.1 25

0.1 32 0.2 29

0.1 32 0.3 30

0.2 16 0.1 10

0.2 16 0.2 11

0.2 16 0.3 24

0.2 24 0.1 25

0.2 24 0.2 27

0.2 24 0.3 29

0.2 32 0.1 25

0.2 32 0.2 29

0.2 32 0.3 30

0.3 16 0.1 9

0.3 16 0.2 24

0.3 16 0.3 23

0.3 24 0.1 20

0.3 24 0.2 22

0.3 24 0.3 26

0.3 32 0.1 24

0.3 32 0.2 30

0.3 32 0.3 32

5.1 Training and testing of MLP

The NN with one input, one output, and two 

hidden layers was trained using the data collected for 

performance test. By keeping the number of layers 

fixed, there is still some tuning required to find the 

optimized number of hidden neurons for both first 

and second hidden layers. Many different architectures 

were tried with varying configurations and the best 

among those was selected based on the training and 

validation accuracies. The different number of neurons 

were selected for hidden layers as shown in Table 3. 

Data were divided into training (70%), validation 

(15%) and testing (15%). The purpose of the 
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validation data is to validate the accuracy of various 

models after training so that the best configuration 

can be selected. The testing data should then be used 

to test the best configuration performance.

Table 3 Number of neurons against two hidden layers

Layer no. No. of neurons

First hidden layer 10, 15, 20, 25, 30

Second hidden layer 5, 10, 15

The validation data cannot be used to test the 

accuracy of the best configuration since that data had 

already been seen by the NN and thus unable to give 

an unbiased performance indication. The different 

models resulted from the different number of neurons 

were trained using the training data and the 

performance was validated using the validation data. 

Before feeding the data to the neural network, the 

normalization was performed using the StandardScalar 

from Scikit-learn[16]. This is required because the 

input features are usually on a different scale and 

normalization transforms the data to have the mean of 

0 and standard deviation of 1. To compile the model,

mean squared error, Adam, and coefficient of 

determination(R2) were used as the loss, optimizer, 

and the metrics of accuracy respectively. The 

coefficient of deviation(R2) used to determine the 

model accuracy can be given as:

  


  

  





  

  

 


where the labeled true output value and the 

predicted value of each dataset instance i are denoted 

by yi and pi respectively, while denotes the mean 

value of the data set. The mean squared error can be 

written as:

 

 






where the labeled true output value and the 

predicted value of each dataset instance i are denoted 

by pi and yi respectively. These data can be passed 

to the neural network in two different ways i.e., 

gradient descent and mini-batch gradient decent. The 

batch gradient descent updates the weights only once 

all of the data has been passed through the neural 

network while mini-batch gradient decent passes the 

data in small batches(e.g. 32, 64, 128 etc.) and 

updates the weights once that small batch has been 

passed through the neural network. Thus, the 

mini-batch gradient descent results in faster weight 

updates and more efficient compared to batch gradient 

descent. In the current study, the data was passed in 

the batches of 64. 

The data for the L-T mode horn was used to train 

many different models resulted from the different 

number of neurons in the first and second hidden 

layers. The performances of different models were 

compared based on the training and validation 

accuracies. The number of neurons in the first and 

second hidden layers of the best model are 20 and 

10 respectively and its architecture is shown in the 

Fig. 5. The best model obtained had the training and 

validation accuracies of 93 % and 91 % respectively. 

The trends of training and validation accuracies of 

the model with respect to the number of epochs are 

shown in Fig. 6 while the loss in given in Fig. 7. 

The model had some problems learning from the 

training data as can been from the noisy training 

accuracies in Fig. 6 but it actually gets stable by the 

end of training (i.e. 800 epochs). On the other hand, 

the model validation accuracy although remained 

lower than the training accuracy was stable 

throughout the validation process.

The testing data was used to test the accuracy of 

the best model. The model performed reasonably well 

with an accuracy of 90% as shown in the Fig. 8. 
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The model predictions were very close to the target 

output values.

Fig. 5 The best architecture for L-T horn 

Fig. 6 Training and validation performance

Fig. 7 Loss during training and validation

Fig. 8 The predicted values vs the true output labels

5.2 Algorithm description

As stated earlier, the USW quality depends on the 

weld parameters such as pressure, time, and 

amplitude. The NN was trained and tested for L-T 

mode horn. The trained neural network has the 

potential to be implemented in a USW machine. The 

user needs to specify the value of these three 

parameter before the machine starts making welds. 

These parameters could be input to the NN model 

automatically which then predicts the weld strength 

corresponding to the weld parameters. As the weld 

strength is an indicator of the weld quality, the 

machine would classify the welds as good/bad 

depending on the predicted strength. The strength 

range for good/bad welds needs to be specified by 

the user as it varies depending on the thickness and 

weld material. 
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5. Conclusion

The MLP neural network was trained using the 

weld data that was collected for the performance test. 

In case of L-T mode horn, the training and validation 

accuracies for the best model were 93 and 91 percent 

respectively with 20 and 10 as the optimum number 

of neurons for the first and second hidden layers 

respectively. These best performing models were 

tested on a separate test dataset. The MLP trained on 

the L-T mode dataset attained 90 %. The NN models 

for both the horns have the potential to predict the 

weld strengths and be implemented in a USW 

machine for weld quality monitoring. 

The MLP model trained on L-T mode horn data 

attained an accuracy of 90 %. The NN models for 

the L-T mode horn have the potential to predict the 

weld strengths and be implemented in a USW 

machine for weld quality monitoring. 
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