• Title/Summary/Keyword: weighting polynomial

Search Result 36, Processing Time 0.02 seconds

A Design Weighting Polynomial Parameter Tuning of a Self Tuning Controller (자기동조 제어기의 설계 하중다항식 계수 조정)

  • 조원철;김병문
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.87-95
    • /
    • 1998
  • This paper presents the method for the automatic tuning of a design weighting polynomial parameter of a generalized minimum-variance stochastic self tuning controller which adapts to changes in the system parameters with time delays and noises. The self tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing a design weighting polynomial parameters. The proposed self tuning method is simple and effective compared with other existing self tuning methods. The computer simulation results are presented to illustrate the procedure and to show the performance of the control system.

  • PDF

Design of $H_{\infty}$ Controller with Different Weighting Functions Using Convex Combination

  • Kim Min-Chan;Park Seung-Kyu;Kwak Gun-Pyong
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.193-197
    • /
    • 2004
  • In this paper, a combination problem of controllers which are the same type of $H_{\infty}$ controllers designed with different weighting functions. This approach can remove the difficulty in the selection of the weighting functions. As a sub-controller, the Youla type of $H_{\infty}$ controller is used. In the $H_{\infty}$ controller, Youla parameterization is used to minimize $H_{\infty}$ norm of mixed sensitivity function by using polynomial approach. Computer simulation results show the robustness improvement and the performance improvement.

Design Polynomial Tuning of Multivariable Self Tuning Controllers (다변수 자기동조 제어기의 설계다항식 조정)

  • Cho, Won-Chul;Shim, Tae-Eun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.22-33
    • /
    • 1999
  • This paper presents the method for the automatic tuning of a design weighting polynomial parameters of a generalized minimum-variance stochastic ultivariable self-tuning controller which adapts to changes in the higher order nonminimum phase system parameters with time delays and noises. The self-tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing the design weighting polynomial parameters of the controller. The proposed multivariable self-tuning method is simple and effective compared with pole restriction method. The computer simulation results are presented to adapt the higher order multivariable system with nonminimum phase and with changeable system parameters.

  • PDF

A self tuning controller using genetic algorithms (유전 알고리듬을 이용한 자기동조 제어기)

  • 조원철;김병문;이평기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.629-632
    • /
    • 1997
  • This paper presents the design method of controller which is combined Genetic Algorithms with the Generalized minimum variance self tuning controller. It is shown that the controllers adapts to changes in the system parameters with time delays and noises. The self tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing a polynomial parameters. The computer simulation results are presented to illustrate the procedure and to show the performance of the control system.

  • PDF

The variation of one machine scheduling problem

  • Han, Sangsu;Ishii, Hiroaki;Fujii, Susumu;Lee, Young-Hae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.04a
    • /
    • pp.6-15
    • /
    • 1993
  • A generalization of one machine maximum lateness minimization problem is considered. There are one achine with controllable speed and n weighting jobs $J_{j}$, j=1, 2, ..., n with ambiguous duedates. Introducing fuzzy formulation, a membership function of the duedate associated with each job $J_{j}$, which describes the satisfaction level with respect to completion time of $J_{j}$. Thus the duedates are not constants as in conventional scheduling problems but decision variables reflecting the fuzzy circumstance of the job completing. We develop the polynomial time algorithm to find an optimal schedule and jobwise machine speeds, and to minimize the total sum of costs associated with jobwise machine speeds and dissatisfaction with respect to completion times of weighting jobs. jobs.

  • PDF

A allowable weighting value for robustness of polynomial with coefficient perturbations (다향식의 견실특성을 위한 허용 하중치 설정)

  • 오세준;윤한오;박홍배;김수중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.429-434
    • /
    • 1990
  • Given the polynomial in z, P$_{0}$ (z) = z$^{n}$ + a$_{1}$z$^{n-1}$ + a$_{2}$z$^{n-2}$ + ... + a$_{n-1}$z + a$_{0}$ , it is of interest to know how much coefficient a$_{I}$ can be perturbed while simultaneously preserving the stable property of the polynomials. In this paper, we derive the maximal intervals, centered about the nominal values of the coefficients, having the following property: the polynomial remains stable for all variations within these intervals. And then, under the unfixed weighted perturbation evaluate upper and lower allowable perturbations.tions.s.

  • PDF

A Study on the $H_{\infty}$ Robust Controller for Adaptive Control-polynomial approach (적응제어를 위한 $H_{\infty}$ 강인제어기의 설계-다항식 접근방법)

  • Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.936-938
    • /
    • 1996
  • The $H_{\infty}$ robust controller is designed for on-line adaptive control application by using polynomial approach. The $H_{\infty}$ robust controllers for adaptive system were designed first by Grimble. But they have a problem that two minimum costs can exist and did not minimize the conventional $H_{\infty}$ cost function which is the $H_{\infty}$ sum of weighted sensitivity and complementary sensitivity terms. In this paper, the two minimum costs problem can be avoided and the conventional $H_{\infty}$ cost function is minimized by employing the Youla parameterization and polynomial approach at the same time. In addition pole placement is possible without any relation with weighting function.

  • PDF

Shape Reconstruction from Unorganized Cloud of Points using Adaptive Domain Decomposition Method (적응적 영역분할법을 이용한 임의의 점군으로부터의 형상 재구성)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.89-99
    • /
    • 2006
  • In this paper a new shape reconstruction method that allows us to construct surface models from very large sets of points is presented. In this method the global domain of interest is divided into smaller domains where the problem can be solved locally. These local solutions of subdivided domains are blended together according to weighting coefficients to obtain a global solution using partition of unity function. The suggested approach gives us considerable flexibility in the choice of local shape functions which depend on the local shape complexity and desired accuracy. At each domain, a quadratic polynomial function is created that fits the points in the domain. If the approximation is not accurate enough, other higher order functions including cubic polynomial function and RBF(Radial Basis Function) are used. This adaptive selection of local shape functions offers robust and efficient solution to a great variety of shape reconstruction problems.

Weighted Interpolation Method Using Supplementary Filter (보조필터를 이용한 가중치 보간방법)

  • Jang, In-Gul;Lee, Jae-Kyung;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.119-124
    • /
    • 2011
  • Interpolation filters are widely used in many communication and multimedia applications. Polynomial interpolation computes the coefficients of the polynomial according to the input information to obtain the interpolated value. Recently, FIR interpolation method using supplementary filters was proposed to improve the performances of polynomial interpolation methods. In this paper, by combining a weighting factor approach with the supplementary filter method, we propose a weighted interpolation method which can be efficiently used to compute the maximum or minimum values of a given curve using only a restricted number of sample values. With application to the interpolation of normal distribution curves used in XRF systems, it is shown that the proposed approach exhibits improved performances compared with conventional interpolation methods.

Genetically Optimized Self-Organizing Polynomial Neural Networks (진화론적 최적 자기구성 다항식 뉴럴 네트워크)

  • 박호성;박병준;장성환;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.40-49
    • /
    • 2004
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Self-Organizing Polynomial Neural Networks(SOPNN), discuss a comprehensive design methodology and carry out a series of numeric experiments. The conventional SOPNN is based on the extended Group Method of Data Handling(GMDH) method and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons (or nodes) located in each layer through a growth process of the network. Moreover it does not guarantee that the SOPNN generated through learning has the optimal network architecture. But the proposed GA-based SOPNN enable the architecture to be a structurally more optimized network, and to be much more flexible and preferable neural network than the conventional SOPNN. In order to generate the structurally optimized SOPNN, GA-based design procedure at each stage (layer) of SOPNN leads to the selection of preferred nodes (or PNs) with optimal parameters- such as the number of input variables, input variables, and the order of the polynomial-available within SOPNN. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. A detailed design procedure is discussed in detail. To evaluate the performance of the GA-based SOPNN, the model is experimented with using two time series data (gas furnace and NOx emission process data of gas turbine power plant). A comparative analysis shows that the proposed GA-based SOPNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.