• Title/Summary/Keyword: weighted inequalities

Search Result 54, Processing Time 0.03 seconds

SCHUR CONVEXITY OF L-CONJUGATE MEANS AND ITS APPLICATIONS

  • Chun-Ru Fu;Huan-Nan Shi;Dong-Sheng Wang
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.503-520
    • /
    • 2023
  • In this paper, using the theory of majorization, we discuss the Schur m power convexity for L-conjugate means of n variables and the Schur convexity for weighted L-conjugate means of n variables. As applications, we get several inequalities of general mean satisfying Schur convexity, and a few comparative inequalities about n variables Gini mean are established.

Weighted Carlson Mean of Positive Definite Matrices

  • Lee, Hosoo
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.479-495
    • /
    • 2013
  • Taking the weighted geometric mean [11] on the cone of positive definite matrix, we propose an iterative mean algorithm involving weighted arithmetic and geometric means of $n$-positive definite matrices which is a weighted version of Carlson mean presented by Lee and Lim [13]. We show that each sequence of the weigthed Carlson iterative mean algorithm has a common limit and the common limit of satisfies weighted multidimensional versions of all properties like permutation symmetry, concavity, monotonicity, homogeneity, congruence invariancy, duality, mean inequalities.

ON SOME WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING EXTENDED RIEMANN-LIOUVILLE FRACTIONAL CALCULUS OPERATORS

  • Iqbal, Sajid;Pecaric, Josip;Samraiz, Muhammad;Tehmeena, Hassan;Tomovski, Zivorad
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.161-184
    • /
    • 2020
  • In this article, we establish some new weighted Hardy-type inequalities involving some variants of extended Riemann-Liouville fractional derivative operators, using convex and increasing functions. As special cases of the main results, we obtain the results of [18,19]. We also prove the boundedness of the k-fractional integral operator on Lp[a, b].

RADO'S AND POPONOV'S INEQUALITIES OF PROBABILITY MEASURES FOR POSITIVE REAL NUMBERS

  • Lee, Hosoo;Kim, Sejong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.165-172
    • /
    • 2014
  • In this paper, we derive some valuable inequalities of Rado's and Poponov's types on the open interval of positive real numbers, and then show weighted generalizations of Rado's and Poponov's inequalities on the set of positive real numbers equipped with compactly supported probability measure.

Two-Weighted Intergal Inequalities for Differential Forms

  • Xiuyin, Shang;Zhihua, Gu;Zengbo, Zhang
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.403-410
    • /
    • 2009
  • In this paper, we make use of the weight to obtain some two-weight integral inequalities which are generalizations of the Poincar$\'{e}$ inequality. These inequalities are extensions of classical results and can be used to study the integrability of differential forms and to estimate the integrals of differential forms. Finally, we give some applications of this results to quasiregular mappings.

PERELMAN TYPE ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES FOR WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS UNDER CURVATURE DIMENSION CONDITION

  • Wang, Yu-Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1539-1561
    • /
    • 2021
  • We prove Perelman type 𝒲-entropy formulae and differential Harnack estimates for positive solutions to weighed doubly nonlinear diffusion equation on weighted Riemannian manifolds with CD(-K, m) condition for some K ≥ 0 and m ≥ n, which are also new for the non-weighted case. As applications, we derive some Harnack inequalities.