DOI QR코드

DOI QR Code

SCHUR CONVEXITY OF L-CONJUGATE MEANS AND ITS APPLICATIONS

  • Chun-Ru Fu (Applied college of science and technology Beijing Union University) ;
  • Huan-Nan Shi (Teacher's College Beijing Union University) ;
  • Dong-Sheng Wang (Basic courses department Beijing Polytechnic)
  • Received : 2022.01.24
  • Accepted : 2023.01.26
  • Published : 2023.05.01

Abstract

In this paper, using the theory of majorization, we discuss the Schur m power convexity for L-conjugate means of n variables and the Schur convexity for weighted L-conjugate means of n variables. As applications, we get several inequalities of general mean satisfying Schur convexity, and a few comparative inequalities about n variables Gini mean are established.

Keywords

Acknowledgement

The authors would like to thank the anonymous referees for critical comments and suggestions that definitely led to improvements of the original manuscript.

References

  1. P. S. Bullen, Dictionary of inequalities, second edition, Monographs and Research Notes in Mathematics, CRC, Boca Raton, FL, 2015. https://doi.org/10.1201/b18548 
  2. Y.-M. Chu, G. D. Wang, and X. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr. 284 (2011), no. 5-6, 653-663. https://doi.org/10.1002/mana.200810197 
  3. Y.-M. Chu and W. F. Xia, Necessary and sufficient conditions for the Schur harmonic convexity of the generalized Muirhead mean, Proc. A. Razmadze Math. Inst. 152 (2010), 19-27. 
  4. Y.-M. Chu and X. M. Zhang, Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave, J. Math. Kyoto Univ. 48 (2008), no. 1, 229-238. https://doi.org/10.1215/kjm/1250280982 
  5. Y.-M. Chu, X. M. Zhang, and G. D. Wang, The Schur geometrical convexity of the extended mean values, J. Convex Anal. 15 (2008), no. 4, 707-718. 
  6. Z. Daroczy and J. Dasc˘al, On the equality problem of conjugate means, Results Math. 58 (2010), no. 1-2, 69-79. https://doi.org/10.1007/s00025-010-0042-4 
  7. Z. Daroczy and Z. Pales, On means that are both quasi-arithmetic and conjugate arithmetic, Acta Math. Hungar. 90 (2001), no. 4, 271-282. https://doi.org/10.1023/A:1010641702978 
  8. Z. Daroczy and Z. Pales, On a class of means of several variables, Math. Inequal. Appl. 4 (2001), no. 3, 331-341. https://doi.org/10.7153/mia-04-32 
  9. Y. P. Deng, S. H. Wu, and D. He, Schur power convexity for the generalized Muirhead mean, Math. Pract. Theory 44 (2014), no. 5, 255-268.  https://doi.org/10.1155/2014/706518
  10. C. Gini, Diuna formula compressive delle medie, Metron 13 (1938), 3-22. 
  11. M. Klaricic Bakula, Z. Pales, and J. E. Pecaric, On weighted L-conjugate means, Commun. Appl. Anal. 11 (2007), no. 1, 95-110. 
  12. J. C. Kuang, Applied Inequalities (Chang yong bu deng shi), 4rd ed., Shandong Press of Science and Technology, Jinan, China, 2010 (in Chinese). 
  13. A. W. Marshall and I. Olkin, Inequalities: theory of majorization and its applications, Mathematics in Science and Engineering, 143, Academic Press, Inc., New York, 1979. 
  14. J. X. Meng, Y.-M. Chu, and X. M. Tang, The Schur-harmonic-convexity of dual form of the Hamy symmetric function, Mat. Vesnik 62 (2010), no. 1, 37-46. 
  15. F. Qi, J. Sandor, S. S. Dragomir, and A. Sofo, Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math. 9 (2005), no. 3, 411-420. https://doi.org/10.11650/twjm/1500407849 
  16. J. Sandor, The Schur-convexity of Stolarsky and Gini means, Banach J. Math. Anal. 1 (2007), no. 2, 212-215. https://doi.org/10.15352/bjma/1240336218 
  17. H.-N. Shi, Schur Convex Functions and Inequalities, Press of Harbin Industrial University, Harbin, China, 2017 (In Chinese). 
  18. H.-N. Shi, M. Bencze, S. Wu, and D. Li, Schur convexity of generalized Heronian means involving two parameters, J. Inequal. Appl. 2008 (2008), Art. ID 879273, 9 pp. https://doi.org/10.1155/2008/879273 
  19. H.-N. Shi, Y. M. Jiang, and W. D. Jiang, Schur-convexity and Schur-geometrically concavity of Gini means, Comput. Math. Appl. 57 (2009), no. 2, 266-274. https://doi.org/10.1016/j.camwa.2008.11.001 
  20. B. Y. Wang, Foundations of Majorization Inequalities (Kong zhi bu deng shi ji chu), Press of Beijing Normal Univ, Beijing, China, 1990 (In Chinese). 
  21. W. L. Wang, Approaches to Prove Inequalities, Press of Harbin Industrial University, Harbin, China, 2011 (In Chinese). 
  22. A. Witkowski, On Schur-convexity and Schur-geometric convexity of four-parameter family of means, Math. Inequal. Appl. 14 (2011), no. 4, 897-903. https://doi.org/10.7153/mia-14-74 
  23. W. F. Xia and Y.-M. Chu, The Schur multiplicative convexity of the generalized Muirhead mean values, Int. J. Funct. Anal. Oper. Theory Appl. 1 (2009), no. 1, 1-8. 
  24. W. F. Xia and Y.-M. Chu, The Schur convexity of Gini mean values in the sense of harmonic mean, Acta Math. Sci. Ser. B (Engl. Ed.) 31 (2011), no. 3, 1103-1112. https://doi.org/10.1016/S0252-9602(11)60301-9 
  25. Z.-H. Yang, Necessary and sufficient conditions for Schur geometrical convexity of the four-parameter homogeneous means, Abstr. Appl. Anal. 2010 (2010), Art. ID 830163, 16 pp. https://doi.org/10.1155/2010/830163 
  26. H.-P. Yin, H.-N. Shi, and F. Qi, On Schur m-power convexity for ratios of some means, J. Math. Inequal. 9 (2015), no. 1, 145-153. https://doi.org/10.7153/jmi-09-14 
  27. X. M. Zhang, Geometrical Convex Function, Press of Anhui University, Hefei, China, 2004 (In Chinese).