Acknowledgement
The authors would like to thank the anonymous referees for critical comments and suggestions that definitely led to improvements of the original manuscript.
References
- P. S. Bullen, Dictionary of inequalities, second edition, Monographs and Research Notes in Mathematics, CRC, Boca Raton, FL, 2015. https://doi.org/10.1201/b18548
- Y.-M. Chu, G. D. Wang, and X. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr. 284 (2011), no. 5-6, 653-663. https://doi.org/10.1002/mana.200810197
- Y.-M. Chu and W. F. Xia, Necessary and sufficient conditions for the Schur harmonic convexity of the generalized Muirhead mean, Proc. A. Razmadze Math. Inst. 152 (2010), 19-27.
- Y.-M. Chu and X. M. Zhang, Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave, J. Math. Kyoto Univ. 48 (2008), no. 1, 229-238. https://doi.org/10.1215/kjm/1250280982
- Y.-M. Chu, X. M. Zhang, and G. D. Wang, The Schur geometrical convexity of the extended mean values, J. Convex Anal. 15 (2008), no. 4, 707-718.
- Z. Daroczy and J. Dasc˘al, On the equality problem of conjugate means, Results Math. 58 (2010), no. 1-2, 69-79. https://doi.org/10.1007/s00025-010-0042-4
- Z. Daroczy and Z. Pales, On means that are both quasi-arithmetic and conjugate arithmetic, Acta Math. Hungar. 90 (2001), no. 4, 271-282. https://doi.org/10.1023/A:1010641702978
- Z. Daroczy and Z. Pales, On a class of means of several variables, Math. Inequal. Appl. 4 (2001), no. 3, 331-341. https://doi.org/10.7153/mia-04-32
- Y. P. Deng, S. H. Wu, and D. He, Schur power convexity for the generalized Muirhead mean, Math. Pract. Theory 44 (2014), no. 5, 255-268. https://doi.org/10.1155/2014/706518
- C. Gini, Diuna formula compressive delle medie, Metron 13 (1938), 3-22.
- M. Klaricic Bakula, Z. Pales, and J. E. Pecaric, On weighted L-conjugate means, Commun. Appl. Anal. 11 (2007), no. 1, 95-110.
- J. C. Kuang, Applied Inequalities (Chang yong bu deng shi), 4rd ed., Shandong Press of Science and Technology, Jinan, China, 2010 (in Chinese).
- A. W. Marshall and I. Olkin, Inequalities: theory of majorization and its applications, Mathematics in Science and Engineering, 143, Academic Press, Inc., New York, 1979.
- J. X. Meng, Y.-M. Chu, and X. M. Tang, The Schur-harmonic-convexity of dual form of the Hamy symmetric function, Mat. Vesnik 62 (2010), no. 1, 37-46.
- F. Qi, J. Sandor, S. S. Dragomir, and A. Sofo, Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math. 9 (2005), no. 3, 411-420. https://doi.org/10.11650/twjm/1500407849
- J. Sandor, The Schur-convexity of Stolarsky and Gini means, Banach J. Math. Anal. 1 (2007), no. 2, 212-215. https://doi.org/10.15352/bjma/1240336218
- H.-N. Shi, Schur Convex Functions and Inequalities, Press of Harbin Industrial University, Harbin, China, 2017 (In Chinese).
- H.-N. Shi, M. Bencze, S. Wu, and D. Li, Schur convexity of generalized Heronian means involving two parameters, J. Inequal. Appl. 2008 (2008), Art. ID 879273, 9 pp. https://doi.org/10.1155/2008/879273
- H.-N. Shi, Y. M. Jiang, and W. D. Jiang, Schur-convexity and Schur-geometrically concavity of Gini means, Comput. Math. Appl. 57 (2009), no. 2, 266-274. https://doi.org/10.1016/j.camwa.2008.11.001
- B. Y. Wang, Foundations of Majorization Inequalities (Kong zhi bu deng shi ji chu), Press of Beijing Normal Univ, Beijing, China, 1990 (In Chinese).
- W. L. Wang, Approaches to Prove Inequalities, Press of Harbin Industrial University, Harbin, China, 2011 (In Chinese).
- A. Witkowski, On Schur-convexity and Schur-geometric convexity of four-parameter family of means, Math. Inequal. Appl. 14 (2011), no. 4, 897-903. https://doi.org/10.7153/mia-14-74
- W. F. Xia and Y.-M. Chu, The Schur multiplicative convexity of the generalized Muirhead mean values, Int. J. Funct. Anal. Oper. Theory Appl. 1 (2009), no. 1, 1-8.
- W. F. Xia and Y.-M. Chu, The Schur convexity of Gini mean values in the sense of harmonic mean, Acta Math. Sci. Ser. B (Engl. Ed.) 31 (2011), no. 3, 1103-1112. https://doi.org/10.1016/S0252-9602(11)60301-9
- Z.-H. Yang, Necessary and sufficient conditions for Schur geometrical convexity of the four-parameter homogeneous means, Abstr. Appl. Anal. 2010 (2010), Art. ID 830163, 16 pp. https://doi.org/10.1155/2010/830163
- H.-P. Yin, H.-N. Shi, and F. Qi, On Schur m-power convexity for ratios of some means, J. Math. Inequal. 9 (2015), no. 1, 145-153. https://doi.org/10.7153/jmi-09-14
- X. M. Zhang, Geometrical Convex Function, Press of Anhui University, Hefei, China, 2004 (In Chinese).