• Title/Summary/Keyword: weibull model

Search Result 514, Processing Time 0.026 seconds

Survival Analysis of Patients with Breast Cancer using Weibull Parametric Model

  • Baghestani, Ahmad Reza;Moghaddam, Sahar Saeedi;Majd, Hamid Alavi;Akbari, Mohammad Esmaeil;Nafissi, Nahid;Gohari, Kimiya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8567-8571
    • /
    • 2016
  • Background: The Cox model is known as one of the most frequently-used methods for analyzing survival data. However, in some situations parametric methods may provide better estimates. In this study, a Weibull parametric model was employed to assess possible prognostic factors that may affect the survival of patients with breast cancer. Materials and Methods: We studied 438 patients with breast cancer who visited and were treated at the Cancer Research Center in Shahid Beheshti University of Medical Sciences during 1992 to 2012; the patients were followed up until October 2014. Patients or family members were contacted via telephone calls to confirm whether they were still alive. Clinical, pathological, and biological variables as potential prognostic factors were entered in univariate and multivariate analyses. The log-rank test and the Weibull parametric model with a forward approach, respectively, were used for univariate and multivariate analyses. All analyses were performed using STATA version 11. A P-value lower than 0.05 was defined as significant. Results: On univariate analysis, age at diagnosis, level of education, type of surgery, lymph node status, tumor size, stage, histologic grade, estrogen receptor, progesterone receptor, and lymphovascular invasion had a statistically significant effect on survival time. On multivariate analysis, lymph node status, stage, histologic grade, and lymphovascular invasion were statistically significant. The one-year overall survival rate was 98%. Conclusions: Based on these data and using Weibull parametric model with a forward approach, we found out that patients with lymphovascular invasion were at 2.13 times greater risk of death due to breast cancer.

Unemployment Duration and Re-employment Pattern : An Analysis using Weibull Model and Logistic Regression Model (실업자의 재취업과 재취업 형태에 관한 연구 : Weibull Survival Model과 Logistic Regression을 이용한 분석)

  • Kang, Chul-Hee;Kim, Kyo-Seong
    • Korean Journal of Social Welfare
    • /
    • v.39
    • /
    • pp.5-40
    • /
    • 1999
  • Little is known about unemployment duration and re-employment pattern. This paper empirically examines unemployment duration and re-employment pattern using data by the 1998 national survey about the unemployed and their needs. A parametric survival model(Weibull model) is adopted to identify variables predicting unemployment duration. It is found that the data including people without unemployment insurance as well as people with unemployment insurance fit the Weibull model including the hazard distribution that the hazard of reemployment is increasing at an decreasing rate. Variables that affect unemployment duration are age, householdership, family income, size of prior employment organization, and cause of unemployment. In re-employment pattern, statistically significant variables are age, type of prior employment industry, prior employment pattern, and membership in unemployment insurance. This paper provides a basic knowledge about realities of unemployed individuals in the economic crisis period of Korea, identifies research areas for further research, and develops policy implications for the unemployed.

  • PDF

Closeness of Lindley distribution to Weibull and gamma distributions

  • Raqab, Mohammad Z.;Al-Jarallah, Reem A.;Al-Mutairi, Dhaifallah K.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.2
    • /
    • pp.129-142
    • /
    • 2017
  • In this paper we consider the problem of the model selection/discrimination among three different positively skewed lifetime distributions. Lindley, Weibull, and gamma distributions have been used to effectively analyze positively skewed lifetime data. This paper assesses how much closer the Lindley distribution gets to Weibull and gamma distributions. We consider three techniques that involve the likelihood ratio test, asymptotic likelihood ratio test, and minimum Kolmogorov distance as optimality criteria to diagnose the appropriate fitting model among the three distributions for a given data set. Monte Carlo simulation study is performed for computing the probability of correct selection based on the considered optimality criteria among these families of distributions for various choices of sample sizes and shape parameters. It is observed that overall, the Lindley distribution is closer to Weibull distribution in the sense of likelihood ratio and Kolmogorov criteria. A real data set is presented and analyzed for illustrative purposes.

On the Exponentiated Generalized Modified Weibull Distribution

  • Aryal, Gokarna;Elbatal, Ibrahim
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.333-348
    • /
    • 2015
  • In this paper, we study a generalization of the modified Weibull distribution. The generalization follows the recent work of Cordeiro et al. (2013) and is based on a class of exponentiated generalized distributions that can be interpreted as a double construction of Lehmann. We introduce a class of exponentiated generalized modified Weibull (EGMW) distribution and provide a list of some well-known distributions embedded within the proposed distribution. We derive some mathematical properties of this class that include ordinary moments, generating function and order statistics. We propose a maximum likelihood method to estimate model parameters and provide simulation results to assess the model performance. Real data is used to illustrate the usefulness of the proposed distribution for modeling reliability data.

Different estimation methods for the unit inverse exponentiated weibull distribution

  • Amal S Hassan;Reem S Alharbi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.191-213
    • /
    • 2023
  • Unit distributions are frequently used in probability theory and statistics to depict meaningful variables having values between zero and one. Using convenient transformation, the unit inverse exponentiated weibull (UIEW) distribution, which is equally useful for modelling data on the unit interval, is proposed in this study. Quantile function, moments, incomplete moments, uncertainty measures, stochastic ordering, and stress-strength reliability are among the statistical properties provided for this distribution. To estimate the parameters associated to the recommended distribution, well-known estimation techniques including maximum likelihood, maximum product of spacings, least squares, weighted least squares, Cramer von Mises, Anderson-Darling, and Bayesian are utilised. Using simulated data, we compare how well the various estimators perform. According to the simulated outputs, the maximum product of spacing estimates has lower values of accuracy measures than alternative estimates in majority of situations. For two real datasets, the proposed model outperforms the beta, Kumaraswamy, unit Gompartz, unit Lomax and complementary unit weibull distributions based on various comparative indicators.

A NOVEL WEIBULL MARSHALL-OLKIN POWER LOMAX DISTRIBUTION: PROPERTIES AND APPLICATIONS TO MEDICINE AND ENGINEERING

  • ELHAM MORADI;ZAHRA SHOKOOH GHAZANI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1275-1301
    • /
    • 2023
  • This paper introduced the Weibull Marshall-Olkin Power Lomax (WMOPL) distribution. The statistical aspects of the proposed model are presented, such as the quantiles function, moments, mean residual life and mean deviations, variance, skewness, kurtosis, and reliability measures like the residual life function, and stress-strength reliability. The parameters of the new model are estimated using six different methods, and simulation research is illustrated to compare the six estimation methods. In the end, two real data sets show that the Weibull Marshall-Olkin Power Lomax distribution is flexible and suitable for modeling data.

Economic-Statistical Design of Double Sampling T2 Control Chart under Weibull Failure Model (와이블 고장모형 하에서의 이중샘플링 T2 관리도의 경제적-통계적 설계 (이중샘플링 T2 관리도의 경제적-통계적 설계))

  • Hong, Seong-Ok;Lee, Min-Koo;Lee, Jooho
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.471-488
    • /
    • 2015
  • Purpose: Double sampling $T^2$ chart is a useful tool for detecting a relatively small shift in process mean when the process is controlled by multiple variables. This paper finds the optimal design of the double sampling $T^2$ chart in both economical and statistical sense under Weibull failure model. Methods: The expected cost function is mathematically derived using recursive equation approach. The optimal designs are found using a genetic algorithm for numerical examples and compared to those of single sampling $T^2$ chart. Sensitivity analysis is performed to see the parameter effects. Results: The proposed design outperforms the optimal design of the single sampling $T^2$ chart in terms of the expected cost per unit time and Type-I error rate for all the numerical examples considered. Conclusion: Double sampling $T^2$ chart can be designed to satisfy both economic and statistical requirements under Weibull failure model and the resulting design is better than the single sampling counterpart.

An Analysis of Grinding Effects and Economic Life of Cutting Tool with Proportional Age Reduction Model (비례 수명 감소 모형을 사용한 절삭공구의 연마효과 및 경제적 수명 분석)

  • Oh, Sung-Youl;Hong, Jung-Wan;Lee, Sang-Cheon;Lie, Chang-Hoon
    • IE interfaces
    • /
    • v.19 no.4
    • /
    • pp.316-323
    • /
    • 2006
  • In this study, based on Weibull proportional age reduction model and age replacement policy, we analyze economic life of cutting tool which allows re-grinding. Re-grinding task, usually for high-priced machining tools(e.g., broaching tool), is a kind of preventive maintenance activities to extend tool life at the completion of a lot production. The numerical results are also presented. Among the parameters of Weibull proportional age reduction model, the re-grinding effect parameter and Weibull shape parameter have a strong effect on economic tool life, and in the cost parameters, shortage cost is most sensitive. With further study on the parameter estimation of tool life process and cost function, this study can be expected to give more practical contribution to management of general machining tools.

Various types of modelling for scale parameter in Weibull intensity function for two-dimensional warranty data

  • Baik, Jai-Wook;Jo, Jin-Nam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.555-560
    • /
    • 2010
  • One-dimensional approach to two-dimensional warranty data involves modeling us- age as a function of time. Iskandar (1993) suggests a simple linear model for usage. However, simple linear form of intensity function is of limited value to model the situa-tion where the intensity varies over time. In this study Weibull intensity is considered where the scale parameter is expressed in terms of different models. We will nd out how each parameter in the model a ects the warranty cost and which model gives a bigger number of failures within the two-dimensional warranty region.

Comparative Evaluation on the Cost Analysis of Software Development Model Based on Weibull Lifetime Distribution (와이블 수명분포에 근거한 소프트웨어 개발모형의 비용 분석에 관한 비교 평가)

  • Bae, Hyo-Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2022
  • In this study, the finite-failure NHPP software reliability model was applied to the software development model based on the Weibull lifetime distribution (Goel-Okumoto, Rayleigh, Type-2 Gumbe), which is widely used in the software reliability field, and then the cost attributes were compared and evaluated. For this study, failure time data detected during normal operation of the software system were collected and used, the most-likelihood estimation (MLE) method was applied to the parameter estimation of the proposed model, and the calculation of the nonlinear equation was solved using the binary method. As a result, first, in the software development model, when the cost of testing per unit time and the cost of removing a single defect increased, the cost increased but the release time did not change, and when the cost of repairing failures detected during normal system operation increased, the cost increased and the release time was also delayed. Second, as a result of comprehensive comparative analysis of the proposed models, it was found that the Type-2 Gumble model was the most efficient model because the development cost was lower and the release time point was relatively faster than the Rayleigh model and the Goel-Okumoto basic model. Third, through this study, the development cost properties of the Weibull distribution model were newly evaluated, and the analyzed data is expected to be utilized as design data that enables software developers to explore the attributes of development cost and release time.