References
- Carrasco, M., Ortega, E. M. and Cordeiro, G. M. (2008). A generalized modifiedWeibull distribution for lifetime modeling, Computational Statistics & Data Analysis, 53, 450-462. https://doi.org/10.1016/j.csda.2008.08.023
- Cordeiro, G. M., Ortega, E. M. M. and da Cunha, D. C. (2013). The exponentiated generalized class of distributions, Journal of Data Science, 11, 1-27.
- Elbatal, I. (2011). Exponentiated modified Weibull distribution, Economic Quality Control, 26, 189-200.
- Eugene, N., Lee, C. and Famoye, F. (2002). Beta-normal distribution and its applications, Communications in Statistics-Theory and Methods, 31, 497-512. https://doi.org/10.1081/STA-120003130
- Famoye, F., Lee, C. and Olumolade, O. (2005). The beta-Weibull distribution, Journal of Statistical Theory and Applications, 4, 121-138.
- Gupta, P. L. and Gupta, R. C. (1983). On the moments of residual life in reliability and some charac-terization results, Communications in Statistics-Theory and Methods, 12, 449-461. https://doi.org/10.1080/03610928308828471
- Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives, Communications in Statistics-Theory and Methods, 27, 887-904. https://doi.org/10.1080/03610929808832134
- Gupta, R. D. and Kundu, D. (2001). Exponentiated exponential family: An alternative to gamma and Weibull distributions, Biometrical Journal, 43, 117-130. https://doi.org/10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R
- Hanook, S., Shahbaz, M. Q., Mohsin, M. and Golam Kibria, B. M. (2013). A note on beta Inverse-Weibull Distribution, Communications in Statistics-Theory and Methods, 42, 320-335. https://doi.org/10.1080/03610926.2011.581788
- Jones, M. C. (2009). Kumaraswamy's distribution: A beta-type distribution with some tractability advantages, Statistical Methodology, 6, 70-81. https://doi.org/10.1016/j.stamet.2008.04.001
- Lai, C. D., Xie, M. and Murthy, D. N. P. (2003). A modified Weibull distribution, IEEE Transactions on Reliability, 52, 33-37. https://doi.org/10.1109/TR.2002.805788
- Lehmann, E. L. (1953). The power of rank tests, Annals of Mathematical Statistics, 24, 23-43. https://doi.org/10.1214/aoms/1177729080
- Marinho, P. R. D., Bourguignon, M. and Dias, C. R. B. (2015). AdequacyModel 1.0.8: Adequacy of probabilistic models and generation of pseudo-random numbers, Available from: http://cran.rproject.org/web/packages/AdequacyModel/AdequacyModel.pdf.
- Mazen, Z. and Ammar, M. (2009). Parameters estimation of the modified Weibull distribution, Applied Mathematical Sciences, 3, 541-550.
- Mudholkar, G. S. and Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Transactions on Reliability, 42, 299-302. https://doi.org/10.1109/24.229504
- Murthy, D. N. P., Xie, M. and Jiang, R. (2004). Weibull Models, John Wiley & Sons Inc., Hoboken, NJ.
- Nadarajah, S., Cordeiro, G. M. and Ortega, E. M. M. (2011). General results for the beta-modified Weibull distribution, Journal of Statistical Computation and Simulation, 81, 1211-1232. https://doi.org/10.1080/00949651003796343
- Nadarajah, S. and Gupta, A. K. (2004). The beta Fr?chet distribution, Far East Journal of Theoretical Statistics, 14, 15-24.
- Nadarajah, S. and Kotz, S. (2004). The beta Gumbel distribution, Mathematical Problems in Engineering, 2004, 323-332. https://doi.org/10.1155/S1024123X04403068
- Nadarajah, S. and Kotz, S. (2006). The exponentiated type distributions, Acta Applicandae Mathematica, 92, 97-111. https://doi.org/10.1007/s10440-006-9055-0
- Nanda, A. K., Singh, H., Misra, N. and Paul, P. (2003). Reliability properties of reversed residual lifetime, Communications in Statistics-Theory and Methods, 32, 2031-2042. https://doi.org/10.1081/STA-120023264
- Sarhan, A. M. and Kundu, D. (2009). Generalized linear failure rate distribution, Communications in Statistics-Theory and Methods, 38, 642-660. https://doi.org/10.1080/03610920802272414
- Sarhan, A. M. and Zaindin, M. (2009). ModifiedWeibull distribution, Applied Sciences, 11, 123-136.
- Surles, J. G. and Padgett, W. J. (2005). Some properties of a scaled Burr type X distribution, Journal of Statistical Planning and Inference, 128, 271-280. https://doi.org/10.1016/j.jspi.2003.10.003
Cited by
- A new flexible Weibull distribution vol.23, pp.5, 2016, https://doi.org/10.5351/CSAM.2016.23.5.399
- The Exponentiated Weibull-H Family of Distributions: Theory and Applications vol.14, pp.4, 2017, https://doi.org/10.1007/s00009-017-0955-1
- Use of Lèvy distribution to analyze longitudinal data with asymmetric distribution and presence of left censored data vol.25, pp.1, 2018, https://doi.org/10.29220/CSAM.2018.25.1.043