• 제목/요약/키워드: weather forecast

검색결과 615건 처리시간 0.025초

미세먼지 예보시스템 개발 (A Development of PM10 Forecasting System)

  • 구윤서;윤희영;권희용;유숙현
    • 한국대기환경학회지
    • /
    • 제26권6호
    • /
    • pp.666-682
    • /
    • 2010
  • The forecasting system for Today's and Tomorrow's PM10 was developed based on the statistical model and the forecasting was performed at 9 AM to predict Today's 24 hour average PM10 concentration and at 5 PM to predict Tomorrow's 24 hour average PM10. The Today's forecasting model was operated based on measured air quality and meteorological data while Tomorrow's model was run by monitored data as well as the meteorological data calculated from the weather forecasting model such as MM5 (Mesoscale Meteorological Model version 5). The observed air quality data at ambient air quality monitoring stations as well as measured and forecasted meteorological data were reviewed to find the relationship with target PM10 concentrations by the regression analysis. The PM concentration, wind speed, precipitation rate, mixing height and dew-point deficit temperature were major variables to determine the level of PM10 and the wind direction at 500 hpa height was also a good indicator to identify the influence of long-range transport from other countries. The neural network, regression model, and decision tree method were used as the forecasting models to predict the class of a comprehensive air quality index and the final forecasting index was determined by the most frequent index among the three model's predicted indexes. The accuracy, false alarm rate, and probability of detection in Tomorrow's model were 72.4%, 0.0%, and 42.9% while those in Today's model were 80.8%, 12.5%, and 77.8%, respectively. The statistical model had the limitation to predict the rapid changing PM10 concentration by long-range transport from the outside of Korea and in this case the chemical transport model would be an alternative method.

인지온도 확률예보기반 폭염-건강영향예보 지원시스템 개발 및 2019년 온열질환자를 이용한 평가 (Development of Impact-based Heat Health Warning System Based on Ensemble Forecasts of Perceived Temperature and its Evaluation using Heat-Related Patients in 2019)

  • 강미선;벨로리드 밀로슬라브;김규랑
    • 대기
    • /
    • 제30권2호
    • /
    • pp.195-207
    • /
    • 2020
  • This study aims to introduce the structure of the impact-based heat health warning system on 165 counties in South Korea developed by the National Institute of Meteorological Sciences. This system was developed using the daily maximum perceived temperature (PTmax), which is a human physiology-based thermal comfort index, and the Local ENSemble prediction system for the probability forecasts. Also, A risk matrix proposed by the World Meteorological Organization was employed for the impact-based forecasts of this system. The threshold value of the risk matrix was separately set depending on regions. In this system, the risk level was issued as four levels (GREEN, YELLOW, ORANGE, RED) for first, second, and third forecast lead-day (LD1, LD2, and LD3). The daily risk level issued by the system was evaluated using emergency heat-related patients obtained at six cities, including Seoul, Incheon, Daejeon, Gwangju, Daegu, and Busan, for LD1 to LD3. The high-risks level occurred more consistently in the shorter lead time (LD3 → LD1) and the performance (rs) was increased from 0.42 (LD3) to 0.45 (LD1) in all cities. Especially, it showed good performance (rs = 0.51) in July and August, when heat stress is highest in South Korea. From an impact-based forecasting perspective, PTmax is one of the most suitable temperature indicators for issuing the health risk warnings by heat in South Korea.

Building Integrated Vegetation Systems into the New Sainsbury's Building Based on BIM

  • Lee, Dong-Kyu
    • 한국BIM학회 논문집
    • /
    • 제4권2호
    • /
    • pp.25-32
    • /
    • 2014
  • Today, there is a growing need of environment-friendly buildings, so-called 'green', facilities, and energy saving buildings to decrease environmental pollutants released into cities by construction activities. Green-Building Information Modeling (Green-BIM) is a purpose-built solution which supports to forecast energy consumption of 3-D model of a building by augmenting its primary 3-D measurements (width, height and depth) with many more dimensions (e.g. time, costs, social impacts and environmental consequences) throughout a series of sequential phases in the lifecycle of a building. The current study was carried out in order to integrate vegetation systems (particularly green roof and green wall systems) and investigate thermal performance of the new Sainsbury's building which will be built on Melton road, Leicester, United Kingdom. Within this scope, a 3-D building model of the news Sainsbury's building was first developed in $Autodesk^{(R)}$ $Revit^{(R)}$ and this model was then simulated in $Autodesk^{(R)}$ $Ecotect^{(R)}$once weather data of the construction site was obtained from $Autodesk^{(R)}$ Green Building $Studio^{(R)}$. This study primarily analyzed data from (1) solar radiation, (2) heat gains and losses, and (3) heating and cooling loads simulation to evaluate thermal performance of the building integrated with vegetation system or conventionally available envelops. The results showed that building integrated vegetation system can potentially reduce internal solar gains on the building rooftops by creating a 'bioshade'. Heat gains and losses through roofs and walls were markedly diminished by offering greater insulation on the building. Annual energy loads for heating and cooling were significantly reduced by vegetation more significantly through the green roof system in comparison to green wall system.

FNN 기반 신경회로망을 이용한 기상 레이더 에코 분류기 설계 : 에코판단 모듈의 비교 분석 (Design of Meteorological Radar Echo Classifier Using Fuzzy Relation-based Neural Networks : A Comparative Studies of Echo Judgement Modules)

  • 고준현;송찬석;오성권
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.562-568
    • /
    • 2014
  • 기상레이더에는 강수에코와 비강수 에코가 섞여 존재한다. 이런 모호한 지점의 판단이 난해함으로 정확한 일기 예보를 하기는 매우 어려운 일이다. 본 논문에서는 기상청 레이더의 UF 데이터로부터 데이터를 추출하였다. 설계하는 두 분류기의 입출력 데이터는 강수 에코와 비 강수 에코의 특성분석을 통해 구성된다. 더 좋은 성능을 나타나는 입력변수를 사용 하였으며, 에코분류기는 퍼지 뉴럴 네트워크를 기반으로 설계한다. 에코 판단모듈 1과 판단모듈 2를 고려하여 에코분류기의 성능 비교연구를 수행 한다.

베이지안 칼만 필터 기법의 훈련 기간에 따른 풍력 자원 예측 정확도 향상성 연구 (A Study of Improvement of a Prediction Accuracy about Wind Resources based on Training Period of Bayesian Kalman Filter Technique)

  • 이순환
    • 한국지구과학회지
    • /
    • 제38권1호
    • /
    • pp.11-23
    • /
    • 2017
  • 풍력 자원의 단기 예측 가능성은 풍력 발전 단지의 경제적 타당성을 평가하는 중요한 요소이다. 본 연구에서는 풍력 자원의 단기 예측 가능성을 향상시키는 방법의 하나로 베이지안 칼만 필터를 후처리 과정으로 적용하였다. 이때 추정된 모델과 관측 데이터의 상관관계를 평가하기 위하여 일정 시간 동안 베이지안 칼만 훈련 기간이 요구된다. 본 연구는 여러 훈련 기간에 따라 예측 특성을 정량적으로 분석하였다. 태백 지역에서는 3일 단기 베이지안 칼만 훈련으로 기온과 풍속을 예측하는 것이 다른 훈련 기간을 적용할 때보다 우수한 예측 성능을 보였다. 반면 이어도는 6일 이상의 베이지안 칼만 필터의 훈련 기간을 적용한 경우 가장 좋은 예측 성능을 나타낸다. WRF 예측 성능이 떨어지는 사례에서 베이지안 칼만 필터의 예측 성능향상이 뚜렷하게 나타나며, 반대로 WRF 예측이 정확한 지점에서는 필터적용에 따른 성능향상 정도가 약한 경향을 가진다.

우리나라 비중앙급전발전기의 하루전 출력 예측시스템 개발 (Development of One Day-Ahead Renewable Energy Generation Assessment System in South Korea)

  • 이연찬;임진택;오웅진;;최재석;김진수
    • 전기학회논문지
    • /
    • 제64권4호
    • /
    • pp.505-514
    • /
    • 2015
  • This paper proposes a probabilistic generation assessment model of renewable energy generators(REGs) considering uncertainty of resources, mainly focused on Wind Turbine Generator(WTG) and Solar Cell Generator(SCG) which are dispersed widely in South Korea The proposed numerical analysis method assesses the one day-ahead generation by combining equivalent generation characteristics function and probabilistic distribution function of wind speed(WS) and solar radiation(SR) resources. The equivalent generation functions(EGFs) of the wind and solar farms are established by grouping a lot of the farms appropriately centered on Weather Measurement Station(WMS). First, the EGFs are assessed by using regression analysis method based on typical least square method from the recorded actual generation data and historical resources(WS and SR). Second, the generation of the REGs is assessed by adding the one day-ahead resources forecast, announced by WMS, to the EGFs which are formulated as third order degree polynomials using the regression analysis. Third, a Renewable Energy Generation Assessment System(REGAS) including D/B of recorded actual generation data and historical resources is developed using the model and algorithm predicting one day-ahead power output of renewable energy generators.

노인을 위한 음성인식 기반의 스마트 미러 시스템 구현 (Implementation of speech recognition based smart mirror system for the elderly)

  • 정원석;권구현;서정욱;송명규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.727-729
    • /
    • 2017
  • 통계청과 보건복지가족부에 따르면 우리나라는 65세 이상 고령인구 비율이 세계 평균치보다 높게 추정되며 이미'고령화 사회(Ageing Society)'에 접어든 것으로 나타났다. 또한, 예상보다 이른 시기에 정보사회에 도달하여 국민들의 삶의 질이 개선되었을 것으로 추정된다. 그러나 고령층은 젊은 층과 달리 새로운 기계에 선뜻 접근하기 어려워 정보의 접근 및 이용에 있어 뚜렷한 차이를 보이고 있어 세대 간 정보 격차(Digital Divide) 현상을 야기 시키고 있다. 이러한 현상을 해결하기 위해 고령층을 위한 음성인식 기반의 스마트 미러 시스템을 구현하였다. 구현한 시스템은 음성인식을 통하여 조명제어 및 날씨, 지하철 시간 정보 조회 서비스를 제공할 수 있다. 구현한 시스템을 통하여 고령층에게 새로운 기계에 대한 접근 용이성을 제공하여 새로운 시대 변화에 동참하는 느낌을 주고 정보를 얻어 생활이 편리하게 만들어 준다는 효과가 기대된다.

  • PDF

기후변화 시나리오를 활용한 인천지역 강우에 의한 작업불능일 변화 연구 (A Study on the Change of Non-Working Days Based on the Rainfall in Incheon Area Using the Climate Change Scenarios)

  • 장준영;이찬식
    • 한국건설관리학회논문집
    • /
    • 제19권1호
    • /
    • pp.103-113
    • /
    • 2018
  • 건설공사는 주로 옥외에서 이루어지기 때문에 토공사, 철근콘크리트 공사 등은 강우에 의한 작업불능일 수가 다수 발생한다. 특히, 지구 온난화에 의한 강우량 변화는 공기산정을 더욱 어렵게 하고 있다. 따라서 공정계획 수립 시 해당지역의 강우량 변화를 파악하고 작업불능일 수를 산정해야 한다. 이 연구에서는 인천지역의 1960년부터 2016년까지의 기상'관측'자료와, 2018년부터 2074년까지의 기상'예측'자료인 RCP 4.5를 활용하여 강우 변화시점을 파악하였고, 그 시점 전 후로 연 강우, 계절별 강우로 인한 작업불능일 수의 변화를 분석하였다. 그 결과 1972년, 1988년, 2013년, 2038년, 2050년, 2069년에 강우량이 뚜렷하게 변화한 것으로 나타났으며, 특히 2013년, 2038년, 2069년 기준으로 강우로 인한 작업불능일 수의 변화 폭이 큰 것으로 파악 되었다.

인공강우를 이용한 축산 자원화물의 비점오염 배출 특성 분석 (Analysis of Livestock Resources on NPS Pollution Characteristics by Rainfall Simulation)

  • 원철희;최용훈;신민환;서지연;최중대
    • 한국농공학회논문집
    • /
    • 제53권2호
    • /
    • pp.67-74
    • /
    • 2011
  • This research focused on the investigation of runoff and nonpoint sources (NPS) pollution characteristics from small soil box plots treated by livestock waste composts. An indoor rainfall simulation was performed over the plots for 60 minutes. Simulated rainfall intensities were 32.4, 43.2, 50.3 and 57.1 mm/hr respectively. Slope of soil box plots was $10^{\circ}$ and $20^{\circ}$, respectively. Rainfall simulation replicated 5 times and the experiment was conducted every four days five times. As the slope of soil box increased, NPS pollution loads increased. And as rainfall intensity was increased from 32.4 to 57.1 mm/hr, NPS pollution loads gradually increased, too. Discharge of NPS pollution loads was the largest in the first simulation and thereafter decreased gradually. Discharged BOD load to the total applied load from $10^{\circ}$ plots, ranged 0.2 to 0.7 %, was 8.4 to 50.0 % lower than slope $20^{\circ}$ plots. When the application rate increased twice, the increase of pollution load was between 1.7~5.7 times. Analysis of Pearson's correlation coefficient showed that organic matter content in pig compost and NPS pollution loads were correlated well. While under liquid compost application, the correlation coefficients between them were not good. It was concluded that application of livestock resources need to consider long-term weather forecast and if necessary, NPS reduction measures must be preceded in order to reduce NPS pollution discharge.

냉기침강효과를 고려한 복잡지형의 최저기온 분포 추정 (Minimum Temperature Mapping in Complex Terrain Considering Cold Air Drainage)

  • 정유란;서형호;황규홍;황범석;윤진일
    • 한국농림기상학회지
    • /
    • 제4권3호
    • /
    • pp.133-140
    • /
    • 2002
  • Site-specific minimum temperature forecasts are critical in a short-term decision making procedure for preventive measures as well as a long-term strategy such as site selection in fruits industry. Nocturnal cold air pools frequently termed in mountainous areas under anticyclonic systems are very dangerous to the flowering buds in spring over Korea, but the spatial resolution to detect them exceeds the current weather forecast scale. To supplement the insufficient spatial resolution of official forecasts, we developed a GIS - assisted frost risk assesment scheme for using in mountainous areas. Daily minimum temperature data were obtained from 6 sites located in a 2.1 by 2.1 km area with complex topography near the southern edge of Sobaek mountains during radiative cooling nights in spring 2001. A digital elevation model with a 10 m spatial resolution was prepared for the entire study area and the cold air inflow was simulated for each grid cell by counting the number of surrounding cells coming into the processing cell. Primitive temperature surfaces were prepared for the corresponding dates by interpolating the Korea Meteorological Administration's automated observational data with the lapse rate correction. The cell temperature values corresponding to the 6 observation sites were extracted from the primitive temperature surface, and subtracted from the observed values to obtain the estimation error. The errors were regressed to the flow accumulation at the corresponding cells, delineating a statistically significant relationship. When we applied this relationship to the primitive temperature surfaces of frost nights during April 2002, there was a good agreement with the observations, showing a feasibility of site-specific frost warning system development in mountainous areas.