Abstract
There exist precipitation echo and non-precipitation echo in the meteorological radar. It is difficult to effectively issue the right weather forecast because of a difficulty in determining these ambiguous point. In this study, Data is extracted from UF data of meteorological radar used. Input and output data for designing two classifier were built up through the analysis of the characteristics of precipitation and non-precipitation. Selected input variables are considered for better performance and echo classifier is designed using fuzzy relation-based nueral network. Comparative studies on the performance of echo classifier are carried out by considering both echo judgement module 1 and module 2.
기상레이더에는 강수에코와 비강수 에코가 섞여 존재한다. 이런 모호한 지점의 판단이 난해함으로 정확한 일기 예보를 하기는 매우 어려운 일이다. 본 논문에서는 기상청 레이더의 UF 데이터로부터 데이터를 추출하였다. 설계하는 두 분류기의 입출력 데이터는 강수 에코와 비 강수 에코의 특성분석을 통해 구성된다. 더 좋은 성능을 나타나는 입력변수를 사용 하였으며, 에코분류기는 퍼지 뉴럴 네트워크를 기반으로 설계한다. 에코 판단모듈 1과 판단모듈 2를 고려하여 에코분류기의 성능 비교연구를 수행 한다.