• 제목/요약/키워드: weak diffraction effect

검색결과 22건 처리시간 0.036초

Tb이 치환된 $RuSr_2(Eu_{1.34}Ce_{0.66})Cu_2O_z$ 계의 초전도 및 자기적 특성 (Superconductivty and Magnetic Properties of Tb-substituted $RuSr_2(Eu_{1.34}Ce_{0.66})Cu_2O_z$)

  • 이호근;이만석
    • Progress in Superconductivity
    • /
    • 제14권2호
    • /
    • pp.110-115
    • /
    • 2012
  • Samples with nominal compositions of $RuSr_2(Eu_{1.34-x}Tb_xCe_{0.66})Cu_2O_z$ (x = 0, 0.67) were prepared and their superconductivity and magnetic properties were compared to shed light on the effect of Tb substitution for Eu. X-ray diffraction measurements indicate that the Tb substitution resulted in a decrease in both a and c lattice parameters in consistent with ionic size difference between Eu and Tb. Contrary to the Tb-free sample, no superconducting transition behavior is observed in the Tb-sustituted sample. It is also found that the Tb substitution for Eu significantly increases the weak-ferromagnetic component of the field-cooled magnetic susceptibility as well as an increase in the magnetic ordering temperature. These results suggest that the magnetic state of the Ru sublattice is significantly affected by the Tb substitution for Eu.

Superconductivty and magnetic properties of $(Ru_{1-x}Nb_x)Sr_2(Sm_{1.4}Ce_{0.6})Cu_2O_z$

  • Lee, H.K.;Bae, S.M.;Lee, J.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권3호
    • /
    • pp.1-4
    • /
    • 2013
  • We investigated the effect of Nb substitution for Ru on the structural and magnetic properties of $(Ru_{1-x}Nb_x)\;Sr_2(Sm_{1.4}Ce_{0.6})Cu_2O_z$ Samples. X-ray diffraction measurements indicated that nearly single-phase samples are formed in the range from x = 0 to 1.0. The superconducting transition temperature determined from the inflection in the field-cooled magnetic susceptibility decreased only slightly from $T_c$ = 25 K for x = 0 to $T_c$ = 22 K for x = 1.0, in consistent with the change in room temperature thermopower of the samples. However, the Nb substitution for Ru above x = 0.25 significantly suppressed the weak ferromagnetic component of the field-cooled magnetic susceptibility. It was also found that the Nb substitution for Ru results in an enhanced diamagnetic susceptibility with Nb content above x = 0.5 in both zero field-cooled and field-cooled magnetization measurements, in contrast to the behavior of the samples with $x{\leq}0.5$ in which the diamagnetic susceptibility decreases as the Nb content increases.

Growth, Structure, and Stability of Ag on Ordered ZrO2(111) Films

  • Han, Yong;Zhu, Junfa;Kim, Ki-jeong;Kim, Bongsoo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.204.2-204.2
    • /
    • 2014
  • Among various metal oxides, ZrO2 is of particular interests and has received widespread attention thanks to its ideal mechanical and chemical stability. As a cheap metal, Ag nanoparticles are also widely used as catalysts in ethylene epoxidation and methanol oxidation. However, the nature of Ag-ZrO2 interfaces is still unknown. In this work, the growth, interfacial interaction and thermal stability of Ag nanoparticles on ZrO2(111) film surfaces were studied by low-energy electron diffraction (LEED), synchrotron radiation photoemission spectroscopy (SRPES), and X-ray photoelectron spectroscopy (XPS). The ZrO2(111) films were epitaxially grown on Pt(111). Three-dimensional (3D) growth model of Ag on the ZrO2(111) surface at 300 K was observed with a density of ${\sim}2.0{\times}1012particles/cm2$. The binding energy of Ag 3d shifts to low BE from very low to high Ag coverages by 0.5 eV. The Auger parameters shows the primary contribution to the Ag core level BE shift is final state effect, indicating a very weak interaction between Ag clusters and ZrO2(111) film. Thermal stability experiments demonstrate that Ag particles underwent serious sintering before they desorb from the zirconia film surface. In addition, large Ag particles have stronger ability of inhibiting sintering.

  • PDF

셀렌화 공정을 제외한 RF 마그네트론 스퍼터링으로 제작된 Cu(In,Ga)Se2 박막의 구조 및 전기적 특성 (Structural and Electrical Properties of Cu(In,Ga)Se2 Thin Films Prepared by RF Magnetron Sputtering without Selenization)

  • 최정규;황동현;손영국
    • 한국표면공학회지
    • /
    • 제46권2호
    • /
    • pp.75-79
    • /
    • 2013
  • A one-step route was developed to fabricate $Cu(In,Ga)Se_2$ (CIGS) thin films by radio frequency (RF) magnetron sputtering from a single quaternary $CuIn_{0.75}Ga_{0.25}Se_2$ target. The effects of the substrate temperatures on the structural and electrical properties of the CIGS layers were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and Hall effect measurements. All the deposited films showed a preferential orientation along the (112) direction. The films deposited at $300^{\circ}C$ and $400^{\circ}C$ revealed that chalcopyrite main (112) peak and weak prominent peaks of (220)/(204) and (312)/(116), indicating polycrystalline structures. The element ratio of the deposited film at $300^{\circ}C$ were almost the same as the near-optimum value. The carrier concentration of the films decreased with increasing substrate temperatures.

RF-MBE 성장조건에 따른 InGaN 단결정 박막의 결정성 관찰 (Effect of Growth Conditions on Crystal Quality of InGaN Epitaxial Layers Grown by RF-MBE)

  • 나현석
    • 열처리공학회지
    • /
    • 제31권5호
    • /
    • pp.237-243
    • /
    • 2018
  • In-rich InGaN epilayers were grown on (0001) sapphire substrates by radio-frequency plasma-assisted molecular beam epitaxy (RF-MBE). InGaN epilayers grown at various growth condition were observed by SEM, XRD, and RHEED. When plasma power of nitrogen increased from 290 to 350 W, surface morphology and crystal quality became worse according to more active nitrogen on the surface of InGaN at N-rich growth condition. As In composition was reduced from 89 to 71% by changing the incoming flux of In and Ga, surface morphology and crystal quality became worse. In addition, weak peaks of cubic InGaN phase was observed from InGaN layer with 71% In composition by XRD ${\Phi}$ scan measurement. When growth temperature decreased from 500 to $400^{\circ}C$, RHEED diffraction pattern was changed to be from streaky to spotty which means atomically rough surface, and spotty pattern showed cubic symmetry of InGaN clearly. XRD ${\Phi}$ scan measurement gave clear evidence that more cubic InGaN phase was formed at low growth temperature. All these results indicates that extremely low surface mobility of Ga adatom caused inferior crystal quality and cubic InGaN phase.

Hydrogen Storage Property Comparison of Pure Mg and Iron (III) Oxide-Added Mg Prepared by Reactive Mechanical Grinding

  • Song, Myoung Youp;Kwon, Sung Nam;Park, Hye Ryoung
    • 대한금속재료학회지
    • /
    • 제50권5호
    • /
    • pp.383-387
    • /
    • 2012
  • The activation of Mg-10 wt%$Fe_2O_3$ was completed after one hydriding-dehydriding cycle. Activated Mg-10 wt%$Fe_2O_3$ absorbed 5.54 wt% H for 60 min at 593 K under 12 bar $H_2$, and desorbed 1.04 wt% H for 60 min at 593 K under 1.0 bar $H_2$. The effect of the reactive grinding on the hydriding and dehydriding rates of Mg was weak. The reactive grinding of Mg with $Fe_2O_3$ is believed to increase the $H_2$-sorption rates by facilitating nucleation (by creating defects on the surface of the Mg particles and by the additive), by making cracks on the surface of Mg particles and reducing the particle size of Mg and thus by shortening the diffusion distances of hydrogen atoms. The added $Fe_2O_3$ and the $Fe_2O_3$ pulverized during mechanical grinding are considered to help the particles of magnesium become finer. Hydriding-dehydriding cycling is also considered to increase the $H_2$-sorption rates of Mg by creating defects and cracks and by reducing the particle size of Mg.

증착 온도에 따른 La2MoO6:Dy3+,Eu3+ 형광체 박막의 광학 특성 (Effect of Deposition Temperature on the Optical Properties of La2MoO6:Dy3+,Eu3+ Phosphor Thin Films)

  • 조신호
    • 한국전기전자재료학회논문지
    • /
    • 제32권5호
    • /
    • pp.387-392
    • /
    • 2019
  • $Dy^{3+}$ and $Eu^{3+}$-co-doped $La_2MoO_6$ phosphor thin films were deposited on sapphire substrates by radio-frequency magnetron sputtering at various growth temperatures. The phosphor thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy, ultraviolet-visible spectroscopy, and fluorescence spectrometry. The optical transmittance, absorbance, bandgap, and photoluminescence intensity of the $La_2MoO_6$ phosphor thin films were found to depend on the growth temperature. The XRD patterns demonstrated that all the phosphor thin films, irrespective of growth temperatures, had a tetragonal structure. The phosphor thin film deposited at a growth temperature of $100^{\circ}C$ indicated an average transmittance of 85.3% in the 400~1,100 nm wavelength range and a bandgap energy of 4.31 eV. As the growth temperature increased, the bandgap energy gradually decreased. The emission spectra under ultraviolet excitation at 268 nm exhibited an intense red emission line at 616 nm and a weak emission line at 699 nm due to the $^5D_0{\rightarrow}^7F_2$ and $^5D_0{\rightarrow}^7F_4$ transitions of the $Eu^{3+}$ ions, respectively, and also featured a yellow emission band at 573 nm, resulting from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of the $Dy^{3+}$ ions. The results suggest that $La_2MoO_6$ phosphor thin films can be used as light-emitting layers for inorganic thin film electroluminescent devices.

트윈롤 주조법으로 제조된 마그네슘합금 판재의 균질화 열처리에 따른 미세조직 및 집합조직 발달 (Investigating the Effect of Homogenization Heat Treatment on the Microstructure and Texture of Magnesium Alloy Sheet Manufactured via Twin Roll Casting)

  • 이희재;박노진
    • 열처리공학회지
    • /
    • 제34권3호
    • /
    • pp.122-129
    • /
    • 2021
  • This study focuses on the microstructural development of 99% magnesium alloy sheet manufactured using twin roll casting (TRC) process. Herein, a plate with a thickness of 5 mm was manufactured using the TRC process, homogenization heat treatment was performed at 400℃ for 2-32 h, and finally, the change in microstructure was evaluated via optical microscopy and textural analysis. The results suggest that the plate manufactured using the TRC process was not destroyed and was successfully rolled into a plate. Microscopic observation suggested that the dendritic cast structure was arranged along the rolling direction. And the central layer of the rolled plate, where was present in a liquid state at the beginning of rolling, solidified later during the TRC process to form central segregation. The initial cast structure and inhomogeneous structure of the plate were recrystallized by homogenization heat treatment for only 2 h, and it was confirmed that the segregated part of the central layer became homogeneous and recrystallization occurred. Grain growth occurred as the heat treatment time increased, and secondary recrystallization occurred, wherein only some grains were grown. The textural analysis, which was conducted via X-ray diffraction, confirmed that the relatively weak basal plane texture developed using the TRC process was formed into a random texture after heat treatment.

BaMoO4:Tb3+ 형광체의 발광과 농도 소광 특성 (Photoluminescence and Concentration Quenching Properties of BaMoO4:Tb3+ Phosphors)

  • 조신호;김진대;황동현;조선욱
    • 한국재료학회지
    • /
    • 제26권2호
    • /
    • pp.67-72
    • /
    • 2016
  • $BaMoO_4:Tb^{3+}$ phosphor powders were synthesized with different concentrations of $Tb^{3+}$ ions using the solid-state reaction method. XRD patterns showed that all the phosphors, irrespective of the concentration of $Tb^{3+}$ ions, had tetragonal systems with two main (112) and (004) diffraction peaks. The excitation spectra of the $Tb^{3+}$-doped $BaMoO_4$ phosphors consisted of an intense broad band centered at 290 nm in the range of 230-330 nm and two weak bands. The former broad band corresponded to the $4f^8{\rightarrow}4f^75d^1$ transition of $Tb^{3+}$ ions; the latter two weak bands were ascribed to the $^7F_2{\rightarrow}^5D_3$ (471 nm) and $^7F_6{\rightarrow}^5D_4$ (492 nm) transitions of $Tb^{3+}$. The main emission band, when excited at 290 nm, showed a strong green band at 550 nm arising from the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ ions. As the concentration of $Tb^{3+}$ increased from 1 to 10 mol%, the intensities of all the emission lines gradually increased, approached maxima at 10 mol% of $Tb^{3+}$ ions, and then showed a decreasing tendency with further increase in the $Tb^{3+}$ ions due to the concentration quenching effect. The critical distance between neighboring $Tb^{3+}$ ions for concentration quenching was calculated and found to be $12.3{\AA}$, which indicates that dipole-dipole interaction was the main mechanism for the concentration quenching of the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ in the $BaMoO_4:Tb^{3+}$ phosphors.

In-X(X=Pb,Sn) 합금의 마르텐사이트변태거동 특성에 관한 연구 (A Study on the Characteristics of Martensitic Transformation Behaviors in In-X(X=Pb,Sn) Alloys)

  • 한창석;한승오
    • 열처리공학회지
    • /
    • 제23권5호
    • /
    • pp.233-238
    • /
    • 2010
  • The phase transformations and the shape memory effect in In-rich Pb alloys and In rich-Sn alloys have been studied by means of X-ray diffractometry supplemented by metallographic observations. The alloys containing 12~15 at.%Pb transform from the ${\alpha}_2$ (fct) phase to the ${\alpha}_1$ (fct) phase by way of an intermediate phase (m phase) on cooling. The results of X-ray diffraction show that the metastable intermediate phase is observed both on cooling and heating, and has a face-centered orthorhombic (fco) structure. It is concluded that the ${\alpha}_1{\rightleftarrows}{\alpha}_2$ transformation is expressed by the ${\alpha}_1{\rightleftarrows}m{\rightleftarrows}{\alpha}_2$ transformation both on usual cooling and heating with the rate more than $8{\times}10^{-3}$ K/s. The $m{\rightleftarrows}{\alpha}_2$ transformation takes place with a mechanism involving macroscopic shear and are of diffusionless (martensitic) type. The temperature hysteresis in the two transformations is 10~13 K between the heating and cooling transformations. The alloys containing 0~11 at.%Sn are -phase solid solutions with a face centered tetragonal structure (c/a > 1) at room temperature, the axial ratio increasing continuously with tin content. The In-(11~15) at.%Sn alloys are mixtures of ${\alpha}$ and ${\beta}$ phases, the ${\beta}$ phase having a f. c. tetragonal structure (c/a < 1). The alloys containing more than 15 at.%Sn are ${\beta}$-phase solid solutions. The In-(12.9~15.0) at.%Sn alloys show a shape memory effect only when quenched to the temperature of liquid nitrogen, although their effect becomes weak and finally disappears after keeping at room temperature for a long time. The ${\beta}{\rightarrow}{\alpha}^{\prime}$ phase transformation is of the diffusionless (martensitic) type, and takes place between 330 K at 12.9 at.%Sn and 150 K at 14.5 at.%Sn. The hysteresis of transformation temperatures on heating and cooling is considerably large (29~40 K), depending on the composition. Both In-Pb and In-Sn alloys showed distinct the shape memory effects.