• Title/Summary/Keyword: wavelet multi-resolution analysis

Search Result 80, Processing Time 0.028 seconds

Analysis of 2-Dimensional Object Recognition Using discrete Wavelet Transform (이산 웨이브렛 변환을 이용한 2차원 물체 인식에 관한 연구)

  • Park, Kwang-Ho;Kim, Chang-Gu;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.194-202
    • /
    • 1999
  • A method for pattern recognition based on wavelet transform is proposed in this paper. The boundary of the object to be recognized includes shape information for object of machine parts. The contour is first represented using a one-dimensional signal and normalized about translation, rotation and scale, then is used to build the wavelet transform representation of the object. Wavelets allow us to decompose a function into multi-resolution hierarchy of localized frequency bands. The recognition of 2-dimensional object based on the wavelet is described to analyze the shape of analysis technique; the discrete wavelet transform(DWT). The feature vectors obtained using wavelet analysis is classified using a multi-layer neural network. The results show that, compared with the use of fourier descriptors, recognition using wavelet is more stable and efficient representation. And particularly the performance for objects corrupted with noise is better than that of other method.

  • PDF

Seafloor Classification Based on the Texture Analysis of Sonar Images Using the Gabor Wavelet

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.77-83
    • /
    • 2008
  • In the process of the sonar image textures produced, the orientation and scale factors are very significant. However, most of the related methods ignore the directional information and scale invariance or just pay attention to one of them. To overcome this problem, we apply Gabor wavelet to extract the features of sonar images, which combine the advantages of both the Gabor filter and traditional wavelet function. The mother wavelet is designed with constrained parameters and the optimal parameters will be selected at each orientation, with the help of bandwidth parameters based on the Fisher criterion. The Gabor wavelet can have the properties of both multi-scale and multi-orientation. Based on our experiment, this method is more appropriate than traditional wavelet or single Gabor filter as it provides the better discrimination of the textures and improves the recognition rate effectively. Meanwhile, comparing with other fusion methods, it can reduce the complexity and improve the calculation efficiency.

Extraction of Series Arc Signals Based on Wavelet Transform in an Indoor Wiring System

  • Ji, Hong-Keun;Cho, Young-Jin;Wang, Guoming;Hwang, Seong-Cheol;Kil, Gyung-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.221-224
    • /
    • 2017
  • This paper dealt with the extraction of series arc signals based on wavelet transform in order to improve the accuracy of arc detection in indoor wiring systems. Three types of arc sources including a cord-cord, a terminal-cord, and an outlet-plug were fabricated to simulate typical arc defects. An arc generator fabricated according to UL 1699 was used to generate arcs. The optimal mother wavelet was selected as bior1.5 by calculating the correlation coefficients between the detected single current pulse and the wavelet. The detected arc current signals were then decomposed into eight levels using the discrete wavelet transform that implements the multi-resolution analysis method. By analyzing the decomposed components, the detail components D6, D7, and D8 were associated with arc signals, which were used for signal reconstruction. From the result, it was verified that the proposed method can be used for the extraction of the series arc signal from the AC mains, which is expected to be applied to further analysis of arc signals in indoor wiring systems.

The wavelet neural network using fuzzy concept for the nonlinear function learning approximation (비선형 함수 학습 근사화를 위한 퍼지 개념을 이용한 웨이브렛 신경망)

  • Byun, Oh-Sung;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.397-404
    • /
    • 2002
  • In this paper, it is proposed wavelet neural network using the fuzzy concept with the fuzzy and the multi-resolution analysis(MRA) of wavelet transform. Also, it wishes to improve any nonlinear function learning approximation using this system. Here, the fuzzy concept is used the bell type fuzzy membership function. And the composition of wavelet has a unit size. It is used the backpropagation algorithm for learning of wavelet neural network using the fuzzy concept. It is used the multi-resolution analysis of wavelet transform, the bell type fuzzy membership function and the backpropagation algorithm for learning. This structure is confirmed to be improved approximation performance than the conventional algorithms from one dimension and two dimensions function through simulation.

Damage detection for a beam under transient excitation via three different algorithms

  • Zhao, Ying;Noori, Mohammad;Altabey, Wael A.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.803-817
    • /
    • 2017
  • Structural health monitoring has increasingly been a focus within the civil engineering research community over the last few decades. With increasing application of sensor networks in large structures and infrastructure systems, effective use and development of robust algorithms to analyze large volumes of data and to extract the desired features has become a challenging problem. In this paper, we grasp some precautions and key points of the signal processing approach, wavelet, establish a relative reliable framework, and analyze three problems that require attention when applying wavelet based damage detection approach. The cases studies how to use optimal scales for extracting mode shapes and modal curvatures in a reinforced concrete beam and how to effectively identify damages using maximum curves of wavelet coefficient differences. Moreover, how to make a recognition based on the wavelet multi-resolution analysis, wavelet packet energy, and fuzzy sets is a meaningful topic that has been addressed in this work. The relative systematic work that compasses algorithms, structures and evaluation paves a way to a framework regarding effective structural health monitoring, orientation, decision and action.

Speckle Noise Reduction and Edge Enhancement in Ultrasound Images Based on Wavelet Transform

  • Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • For B-mode ultrasound images, we propose an image enhancement algorithm based on a multi-resolution approach, which consists of edge enhancing and noise reducing procedures. Edge enhancement processing is applied sequentially to coarse-to-fine resolution images obtained from wavelet-transformed data. In each resolution, the structural features of each pixel are examined through eigen analysis. Then, if a pixel belongs to an edge region, we perform two-step filtering: that is, directional smoothing is conducted along the tangential direction of the edge to improve continuity and directional sharpening is conducted along the normal direction to enhance the contrast. In addition, speckle noise is alleviated by proper attenuation of the wavelet coefficients of the homogeneous regions at each band. This region-based speckle-reduction scheme is differentiated from other methods that are based on the magnitude statistics of the wavelet coefficients. The proposed algorithm enhances edges regardless of changes in the resolution of an image, and the algorithm efficiently reduces speckle noise without affecting the sharpness of the edge. Hence, compared with existing algorithms, the proposed algorithm considerably improves the subjective image quality without providing any noticeable artifacts.

A Study on Progressive Removing Radar Clutter by Wavelet and Recursive Mathematical Morphology (Wavelet과 반복적 수리형태학을 이용한 레이더 클러터의 점진적 제거에 관한 연구)

  • Jeong, Gi-Ryong
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.209-213
    • /
    • 2002
  • MRA(Multi-resolution analysis) algorithm by Wavelet and morphology with $3{\times}3$ SQ(square) SE(structure element) is efficient to remove ship's radar clutter progressively and enhances detecting performance. Smoothing efficiency of RMM (Recursive mathematical Morphology) is better than that of Morphology. So, to get a better result than that of old algorithms, this paper proposes a new MRA algorithm which uses Wavelet and Recursive mathematical Morphology with $3{\times}3$ RHR(rhombus) SE. Simulation result of the proposed algorithm shows that PSNR is 0.65~1.50db better than that of old method.

Wavelet identification for the abnormal seismic wave component of rock burst

  • Yunliang Tan;Wei Yan;Tongbin Zhao
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.437-440
    • /
    • 2003
  • As we know, roof is composed of heterogeneous rock. When roof fractures, a large amount of energy would be released in the form of seismic wave. How to identify the abnormal signal of seismic wave is a much difficult problem, there are many methods used usually, such as Fourier Transformation, filter technique etc., but abnormal signal can't be recognized accurately. In this paper, multi-resolution wavelet technique is used to identify the first and second variation point, based on the Lipschitz $\alpha$. A living example analysis shows, multi-resolution wavelet technique can identify the abnormal signal of seismic wave effectively in different scale, and the omen of roof fall can be grasped in order to forecast the roof fall accurately. It provides a new idea for the predication of catastrophe on rock mechanics and engineering.

  • PDF

A study of speech. enhancement through wavelet analysis using auditory mechanism (인간의 청각 메커니즘을 적용한 웨이블렛 분석을 통한 음성 향상에 대한 연구)

  • 이준석;길세기;홍준표;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.397-400
    • /
    • 2002
  • This paper has been studied speech enhancement method in noisy environment. By mean of that we prefer human auditory mechanism which is perfect system and applied wavelet transform. Multi-resolution of wavelet transform make possible multiband spectrum analysis like human ears. This method was verified very effective way in noisy speech enhancement.

  • PDF

Application of Technique Discrete Wavelet Transform for Acoustic Emission Signals (음향방출신호에 대한 이산웨이블릿 변환기법의 적용)

  • 박재준;김면수;김민수;김진승;백관현;송영철;김성홍;권동진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.585-591
    • /
    • 2000
  • The wavelet transform is the most recent technique for processing signals with time-varying spectra. In this paper, the wavelet transform is utilized to improved the assessment and multi-resolution analysis of acoustic emission signals generating in partial discharge. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals in case of applied voltage 20[kv]. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We applied FIR(Finite Impulse Response)digital filter algorithm in discrete to suppression for random noise. The white noise be included high frequency component denoised as decomposition of discrete wavelet transform level-3. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of acting(the early period, the last period) .

  • PDF