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Abstract: As we know, roof is composed of heterogeneous rock. When roof fractures, a large amount of energy
would be released in the form of seismic wave. How to identify the abnormal signal of seismic wave is a much
difficult problem, there are many methods used usually, such as Fourier Transformation, filter technique etc., but
abnormal signal can’t be recognized accurately. In this paper, multi-resolution wavelet technique is used to identify
the first and second variation point, based on the Lipschitz « . A living example analysis shows, multi-resolution
wavelet technique can identify the abnormal signal of seismic wave effectively in different scale, and the omen of
roof fall can be grasped in order to forecast the roof fall accurately. It provides a new idea for the predication of
catastrophe on rock mechanics and engineering.

1. Introduction

A large range of roof weighting will be induced after mining, accompanying a great amount of energy released
in the form of elastic wave!", and applying micro-seismic wave and acoustic emission techniques for monitoring
rock fracture, roof weighting and rock burst have been concerned all over the world“", However, the shape of
seismic wave caused by roof weighting etc., regarded as superposition of high-frequency and low-frequency signals,
1s so complex that abnormal information which indicating system catastrophe cannot be identified using traditional
technique. Fortunately, the technique of wavelet analysis has been applied successfully in such fields as signal
process'®, earthquake!” and micro-cavity detection of composite materials'” etc. In this paper, multi-resolution
wavelet technique that is used to identify the first and second variation point of seismic wave caused by roof
weighting is introduced.

2. Theory of Multi-resolution Wavelet Technique
Transformation Function of Discrete Wavelet

Wavelet analysis is a kind of method of time and frequency localization with fixed window area, but variable Takagi
window shape, as well as the window changes with time and frequency. Wavelet transformation is of higher frequency
resolution and lower time resolution in the part of low-frequency, and higher time resolution and lower frequency
resolution in high-frequency part. This feature brings wavelet transformation self-adaptability during processing signal.

Assume w(t) € L*(R).L*(R) is a square integrable real space that is considered as energy-limited signal space,
Fourier transformation of (f) is ¥(®). When (@) satisfies the following condition
Al P2
(@)
C, = L—V/~—|da) <oc 1)
]
Then () can be called basic wavelet. A wavelet series or wavelet base can be derived from the transformation of the

function of (f)including scaling-down, scaling-up and shift transfer. As to continuous condition, the wavelet base is

1 jt=b
W)= —=yl— a,be Ra#0 ()
o 1@
Where a is scaling factor , b is shift factor.
As to discrete condition, the wavelet series is
V=27 t=k) jkeZ )
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Multi-resolution Wavelet Analysis

If @(x)is defined as scaling function, then one basic character is the following scale based on binary scale can be
defined

#1 (x) =2/ $(2’ .x) @
Where j=0, -1, -2, ...,. Orthogonal basis set of scaling function can be obtained by the following method: First, to
expand the function ¢(x) using the coefficient 2; then to shift the function @¢(x) by 27n, and to make @(x)normal
using V277 .

V27 ¢{(x-27n) (5)
The wavelet function { in the formula (3) can be defined by the following form:

wi(0)=2"y(2’ - x) ©)

Similarly, the orthogonal basis set of wavelet function can be obtained in such way: First, multiply the function

w(x) using the coefficient 2, then shift the function y(x) 27, and makey(x) normal using 277 .
V2 Iy (x-2"n) (7

Using Mallat algorithm'", primary signal series can be decomposed into approaching signal and specific signal
separately. ‘

Approaching signal: When the resolution is equal to 2/, the discrete approaching of the function f can be derived
from convolution with the scaling function

Cif ={f ()¢ (x-27n)) ®

Where <, > stands for inner product of both functions. Thus, the operator C{ produces an approaching signal pattern
when the resolution is equal to 2j, this just has the similar effect of low-filter.

Specific signal: When the scale of signal changes from 2! to 2/, there is a residual signal , which can be extracted
from convolution of the function f(x) and the transformation of scaling and shifting wavelet function, referred as specific
signal when resolution is equal to 2’ ,

Dif =(f()wi(x-27m)) ©)

the operator Dzj generates the detail part of signal continuously, which has the similar effect of band filter. So the
concerned signal is decomposed to the approaching part C and detail part D.

3. Theory Of Wavelet Identification For Seismic Wave Catastrophe Due to Roof Weighting

Fourier transformation can only determine the macrocosm properties of the singularity of function, but it can
difficultly determine the position and distribution of singularity in space. While wavelet transformation has the
property of localization of space, so it is effective to analyze the position and magnitude of singularity of signal.

There are usually two kinds of circumstances about singularity of signal. First, the amplitude of signal changes
suddenly at some moment, which leads to discontinuousness of signal, the catastrophe point of amplitude is defined
as the first variation point; Secondly, signal seems to be smooth apparently, and the amplitude keeps steady,
however the first order differentiation of signal produces catastrophe, discontinuous as well. It is defined as the
second variation point. The local singulartity of function can be described by the Lipschitz index. Assume n is
nonnegative integer, n<<a<sn+1. If there are two constants A, #,(>>0), and P,(#) polynomial of degree n, satisfying the
following formula as to any & (< hg)

|/ (x, +h)=P,(h)| < 4A|" (10
then at the point xo, f(x) is called Lipschitz ¢ . If the above formula satisfies all x, € (a,b), x, +h e (a,b) as

well, then f(x) is consistent Lipschitz « at the range of (a, b).

Obviously, Lipschitz @ of f(x) at point x, describes normal of the function at the point. The larger the index
Lipschitz o is, the smoother the function is. If the function is continuous and differentiable at some point, then the
index Lipschitz « is equal to 1. If the function is differentiable, but the derivative is bounded and discontinuous, then
the index Lipschitz ¢« is still equal to 1. If the index Lipschitz « is lower than 1 at the point x, then the function at
the point is defined to be singular. If the function is discontinuous but bounded at point x,, then the index Lipschitz «
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of the point equals zero.
While analyzing the kind of local singularity using wavelet theory, the wavelet coefficient depends on the features
of the function f(x) in the neighborhood of the point x, and the scaling of wavelet transformation. Assume

f(x)e *(R), Vxe Ox,, wavelet ¥y satisfies continuous and differential, and has n order die way moment (n is
positive integer)

|Wf (S,x)] < Ks® (K is constant) (1
then « is named singular index of x, point (or Lipschitz index).
Therefore, the catastrophic features of seismic wave can be identified by Lipschitz index.

4. Instance Analysis

Immediate roof of No. 5 seam of Mentougou Mine of Beijing Mining Bureau is high strength sandstone of 5
m thickness. Unilateral strength of compression is 110 MPa, brittleness is intense, and roof will fall soon once it

fracture. The following will make the first and second catastrophe analysis on seismic wave caused by roof fracture
and fall.

The First Catastrophe Analysis

The original signal is decomposed on the sixth layer. If a6 is the low-frequency part of the sixth layer, and dl,
d2, d3, d4, dS, d6 are the high-frequency parts from the first to the sixth layer. Fig. 1 illustrates that the original signal,
low-frequency and high-frequency signal all show abnormality at the first catastrophe range with t=125s~215s, with
which corresponding from initial damage to fracture of roof. However, on the eve of noticeable movement of roof, the
original signal, low-frequency signal a6 and high-frequency signal d4, d5, d6 are all normal. When t=385s~410s,
high-frequency signals d1, d2, d3 start to be abnormal, and the roof fall when t=440s.
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Fig. 1. The first catastrophe analysis.

The Second Catastrophe Analysis

As Fig.2 shows, the original signal is differential and decomposed on the second layer. If a2 is the
low-frequency part of the second layer, d1, d2 are high-frequency parts of the first and the second layers. The
figure illustrates the original signal, low-frequency part a2 and high-frequency part d2 all show abnormality when
t=1255~2135s, while d1 shows to be abnormal when t=125s~250s. The d1 is 35s longer than that of the origin signal,
low-frequency signal and high-frequency signal.

Comparing the two methods of catastrophe identification, we can conclude that the first catastrophe identification is
more feasible on seismic wave analysis due to roof weighting.
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Roof fall
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Fig. 2. The second catastrophe analysis.

5. Conclusions

Roof is a kind of typical heterogeneous material. The fracture of roof will release a large amount of energy and
result in seismic wave. Multi-resolution wavelet technique can be used to effectively analyze the catastrophe of
seismic wave in different scale and to grasp the information of roof fall. The paper provides a new idea for the
prediction analysis of catastrophe on rock mechanics and engineering.
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