• Title/Summary/Keyword: wave-energy

Search Result 2,426, Processing Time 0.028 seconds

A Study on Seismic Source and Propagntion Characteristics using a Series of 12 Fukuoka Earthquakes (후쿠오카 지역에서 발생한 12개 지진의 지진원 밑 지진파 감쇠값에 관한 연구)

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.89-97
    • /
    • 2007
  • Parameters including the seismic sources and the elastic wave propagation characteristics were analysed using the observed ground motions from 12 Fukuoka region earthquakes. The Levenberg-Marquardt algorithm was applied to invert all the variables non-linearly and simultaneously with S wave energy in fiequency domain. Average stress drop of 12 events and local attenuation parameter $\kappa$ under seismic stations were estimated to about 79.2-bar and 0.043 respectively. Regional attenuation parameter, Qo and ${\eta}$, were also estimated to be about 248.1 and 0.558 respectively. Low value of Qo seems to caused by inhomogeneous tectonic characteristics between Japan island and southern Korean peninsula. $\kappa$ values are much higher than that characterizing EUS (Eastern United States) region, and nearly similar to that of WUS (Western Waited States) region. If the informations on site specific amplification of all the seismic stations are known, $\kappa$ values can be estimated more precisely. All the values including the seismic sources and the site and crustal scale propagation characteristics can be used as seismic design parameters.

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.

Numerical Analysis on Liquefaction Countermeasure of Seabed under Submerged Breakwater using Concrete Mat Cover (for Regular Waves) (콘크리트매트 피복을 이용한 잠제하 해저지반에서의 액상화 대책공법에 관한 수치해석(규칙파 조건))

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.361-374
    • /
    • 2016
  • When the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure is generated significantly due to pore volume change associated with rearrangement soil grains. This effect leads a seabed liquefaction around and under structures as a result from decrease in the effective stress, and the possibility of structure failure is increased eventually. These facts shown above have been investigated in the previous studies related to regular and irregular waves. This study suggested a concrete mat for preventing the seabed liquefaction near the submerged breakwater. The concrete mat was mainly used as a countermeasure for scouring protection in riverbed. According to installation of the concrete mattress, the time and spatial series of the deformation of submerged breakwater, the pore water pressure, and the pore water pressure ratio in the seabed were investigated. Their results were also compared with those of the seabed unprotected with the concrete mat. The results presented were confirmed that the liquefaction potential of seabed under the concrete mattress is significantly reduced under regular wave field.

Effect of Electrolyte Amounts on Electrochemical Properties of Coin-Type Lithium-Ion Cells (액체전해액의 함량에 따른 리튬이온전지 코인셀의 전기화학적 특성 연구)

  • Yoon, Byeolhee;Han, Taeyeong;Kim, Seokwoo;Jin, Dahee;Lee, Yong min;Ryou, Myung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.2
    • /
    • pp.39-46
    • /
    • 2018
  • Many studies on the electrochemical performance of Li secondary batteries have been obtained using coin-type cells due to the ease of assembly, low cost and ensuring reproducibility. The coin-type cell consists of a case, a gasket, a spacer disk, and a wave spring. These structural features require a greater amount of liquid electrolyte to assemble than other types of cells such as laminated cells and cylindrical cells. Nevertheless, little research has been conducted on the effect of excess liquid electrolytes on the electrochemical performances of Li secondary batteries. In this study, we investigate the effect of different amounts of electrolyte on the coin-type cells. The amount of electrolytes is adjusted to 30 and $100mg\;mAh^{-1}$. Cycle performances at room temperature ($25^{\circ}C$) and high temperature ($60^{\circ}C$) and high voltage are performed to investigate the electrochemical properties of the different amount of electrolytes. In the case of the unit cell including the electrolyte of $30mg\;mAh^{-1}$, the discharging capacity retention characteristic is excellent in comparison with the case of $100mg\;mAh^{-1}$ under the high temperature and high voltage condition. The former shows a larger increase in internal resistance than the latter, confirming that the amount of electrolyte significantly influences the discharge capacity retention characteristics of the battery.

A Study on the Influence of Urban Environment on the Generation of Thermal Diseases (도시 환경이 온열질환 발생에 미치는 영향에 관한 연구)

  • Lee, Su-Mi;Kweon, Ihl;Kim, Yong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.84-92
    • /
    • 2019
  • The deterioration of the urban heat environment due to climate change and the occurrence of heat-related diseases have emerged as one of the major social problems. This has led to more research on climate change, including heat waves, but it is mainly focused on climate factors. However, the urban heat island phenomenon accelerates the summer heat wave, and the increasing trend of heat-related patients in urban areas suggests the impact of the city's environment. Thus, this study analyzed the effects of physical and social characteristics of urban areas on heat-related patients in Seoul and Gyeonggi-do. The analysis showed that the ratio of the total area of residential, commercial and industrial facilities, the main source of heat energy locality, among the land use statuses, was not statistically significant, but the road area and the green area were found to have a positive and negative The population density and the percentage of people aged 65 or older, the percentage of people living alone and the proportion of people receiving basic living were all shown to be significant, with only the ratio of elderly living alone and the ratio of population density having negative effects. The results of the study can be used to develop urban policy alternatives related to local warming patients.

Analysis of Site Amplification of Seismic Stations using Odesan Earthquake (오대산지진 자료를 이용한 국내 지진관측소 부지의 지반증폭특성 연구)

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • Site amplification should be considered in order to estimate Soil-Structure Interaction (SSI), seismic source and attenuation parameters with a greater degree of reliability. The horizontal to vertical (H/V) ratio technique, originally proposed by Nakamura (1989), has been applied to analyze the surface waves in microtremor records. Recently, its application has been extended to the shear wave energy of strong motion in order to study the site transfer function. The purpose of this paper is to estimate the H/V spectral ratio using the observed data from 9 seismic stations distributed within the Southern Korean Peninsula, from the Odesan earthquake (2007/01/20). The results show that most of the stations have more stable amplification characteristics in a low frequency band than in a high frequency band. However, each seismic station showed its own characteristic resonant frequency and low and high frequency. The resonant frequency at each station should be estimated carefully, because the quality of seismic data is dependent on the resonant frequency. It can be obtained more reliable results of seismic source and attenuation parameters, if seismic ground motions which deconvolved from site transfer function is used. The site amplification data from this study can be used to generally classify the sites within the Southern Korean Peninsula.

A Study on Predominant Periods and Attenuation Characteristics of Ground Motion (지반 탁월주기와 지반 운동특성에 관한 연구)

  • Kim, So-Gu;Cha, Jeong-Sik;Jeong, Hyeong-Sik
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.139-156
    • /
    • 1995
  • A set of field investigations was performed to estimate accurately the predominant periods of seismic 8round motions and the attenuation characteristics of the seismic ground vibration. Predominant periods of ground motions were estimated from the measurement of the continuous microseismic vibratins of certain periods, inherent in the ground and in the buildings, utilizing the high sensitivity digital velocity seismometer consisting of 3-component geophones and a digital seismograph. Estimated predominant periods of microseismic vibraion of the ground(measured on'the ground surface) and the building (measured on the second floor) were in the range of 0.18~0.235 sec. and 0.26~0.31 sec. respectively. The subsurface structure of the site ground was surveyed by the seismic refraction method utilizing the digital seismicwave probing system. The ground structure was found to be a two-layered system : an upper top soil layer of 7m in thickness with the P-wave velocity of 662m1sec and a lower layer of silty-clayey soils with the P -wave velocity of 2210m1 sec. The attenuation characteristics of the seismic ground vibrations were determined by the amplitude decay measurement method us;ng the Seisgun, which produces strong artificial seismic energy. Measured spatial attenuation coefficients of the ground vibration in vertical(Z) longitudinal(X), transverse(Y) direction were 0.1137, 0.0025, and 0.0290 respectively. Estimated Spartial QP's (inverse of the specific dissipation constant w.r.t. shear waved of X, Y, and Z directions were in the range of 5.913~7.575, 32.371~41.452, 2.794~3.579 re spectively. This indicates that aseimic design of the structures on the site should take stronger consideration regarding the earthquake resistance characteristics of the structures against longitudinal ground motion.

  • PDF

Density Functional Study on Correlation between Magnetism and Crystal Structure of Fe-Al Transition Metal Compounds (Fe-Al 전이금속 화합물의 자성과 결정구조의 상관관계에 대한 밀도범함수연구)

  • Yun, Won-Seok;Kim, In-Gee
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.43-47
    • /
    • 2011
  • It is known that the Fe-Al transition metal compounds have a lot of disagreement about structural stability and magnetism. In this study, the correlation between magnetism and atomic structure of ordered $B_2$, $L1_2$, and $D0_3$ structured Fe-Al compounds has been investigated using the all-electron full-potential linearized augmented plane wave (FLAPW) method based on the generalized gradient approximation (GGA). We found that considered all the structures were calculated to be stabilized in a ferromagnetic state. The calculated spin magnetic moments of the Fe atoms for B2 and $L1_2$ structures were 0.771 and 2.373 ${\mu}_B$, respectively, and that of Fe(I) and Fe(II) in $D0_3$ structure calculated to be 2.409 ${\mu}_B$, 1.911 ${\mu}_B$, respectively. In order to investigate structural stability between $L1_2$ and $D0_3$ structures, we performed the formation enthalpy calculations. As a result, the $D0_3$ structure is found to be more favorable than $L1_2 one by energy difference 16 meV/atom, which is well consistent with the experimental observation. We understood about structural stability and magnetism for Fe-Al compounds in terms of analysis of their atomic and electronic structures.

Magnetic Properties of Cr Substituted SiTe Compounds (SiTe에 Cr을 치환한 화합물의 자기적 성질)

  • Landge, Kalpana;Bialek, Beata;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.4
    • /
    • pp.127-131
    • /
    • 2011
  • In this paper, we study the electronic and magnetic properties of Cr substituted SiTe in the rock-salt structure compound using the full potential linearized augmented plane wave method within the generalized gradient approximation to the exchange correlation potential. Two stoichiometries are studied: $CrSi_3Te_4$ with 25 %, and $CrSiTe_2$ with 50 % Cr substitution. We found, from the total energy calculations, that the equilibrium lattice constant for cubic $CrSi_3Te_4$ is 11.64 a.u. and a = 7.89 a.u. and c = 11.13 a.u. for tetragonal $CrSiTe_2$. The integer value of the calculated magnetic moment per unit cell, $4{\mu}_B$ for $CrSiTe_2$ suggests that this compound is halfmetallic. The magnetic moment per unit cell for $CrSi_3Te_4$ is slightly larger than $4{\mu}_B$. The magnetic moment on Cr atoms are 3.61 and $3.62{\mu}_B$ in the $CrSi_3Te_4$ and $CrSiTe_2$, respectively. The presence of Cr atoms causes that the other atoms become slightly magnetized in both compounds. The electronic properties and the magnetism are discussed with the calculated spin-polarized density of states.

A Study of Roughness Measurement of Rock Discontinuities Using a Confocal Laser Scanning Microscope (콘포컬 레이저 현미경을 이용한 불연속면의 거칠기 측정 연구)

  • Byung Gon Chae;Jae Yong Song;Gyo Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.405-419
    • /
    • 2002
  • Fracture roughness of rock specimens is observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wave length of laser is 488 nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The function of laser reflection auto-focusing enables us to measure line data fast and precisely. The system improves resolution in the light axis (namely z) direction because of the confocal optics. Using the CLSM, it is Possible to measure a specimen of the size up to $10{\;}{\times}{\;}10{\;}cm$ which is fixed on a specially designed stage. A sampling is managed in a spacing $2.5{\;}\mu\textrm{m}$ along x and y directions. The highest measurement resolution of z direction is $10{\;}\mu\textrm{m}$, which is more accurate than other methods. Core specimens of coarse and fine grained granite are provided. Fractures are artificially maneuvered by a Brazilian test method. Measurements are performed along three scan lines on each fracture surface. The measured data are represented as 2-D and 3-D digital images showing detailed features of roughness. Line profiles of the coarse granites represent more frequent change of undulation than those of the fine granite. Spectral analyses by the fast Fourier transform (FFT) are performed to characterize the roughness data quantitatively and to identify influential frequency of roughness. The FFT results suggest that a specimen loaded by large and low frequency energy tends to have high values of undulation change and large wave length of fracture roughness.