• Title/Summary/Keyword: wave overtopping formula

Search Result 24, Processing Time 0.025 seconds

Behavior of Overtopping Flow of Caisson Breakwater with Dissipating Block: Regular Wave Conditions (소파블록피복 케이슨 방파제에서 월파의 거동분석: 규칙파 조건)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.54-62
    • /
    • 2009
  • The present study investigates the behaviour of overtopping flows falling on the leeside of a caisson breakwater with dissipating blocks through laboratory measurements. The falling overtopping flows in the leeside are expected to directly affect the leeside stability of the breakwater. This study focuses on not the resultant stability but the characteristic pattern of the overtopping flows depending on wave conditions through examining front velocity and plunging distance in the leeside. Regular waves were used to investigate the dependence of the overtopping flow pattern on wave conditions and a modified image velocimetry combining the shadowgraphy and cross-correlation method was employed for measurements of image and velocity. From the measurements, it is shown that the plunging distance and front velocity of the overtopping flow in the breakwater leeside increase as the wave period or height increases. From non-dimensional relationships between the variables, empirical formula for the velocity and overtopping distance are suggested.

Physical Model Test for Wave Overtopping for Vertical Seawall with Relatively Steep Bottom Slope for the Impulsive Wave Condition (상대적으로 급한 경사 수심을 갖는 직립식 호안에서 충격파 조건에 대한 월파량 산정 수리실험)

  • Young-Taek Kim;Jong-In Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.33-40
    • /
    • 2023
  • Wave overtopping rate is one of the most important design parameters for coastal structures. In this study, the physical model tests for measuring the wave overtopping have been conducted with the foreshore slope in front of the seawall. The bottom seabed for the coastal road area was fabricated at the wave flume for two areas in the East sea areas. The wave overtopping rate was measured for various water depths and wave conditions in each coastal area. In particular, the impulsive wave conditions were compared with the previous research and the similar trends of wave overtopping was observed. It could be known that the effect of foreshore slope was significant and should be concerned for applying theses formula like EurOtop.

Characteristics of Wave Pressures According to the Installation Location of the Caisson Superstructure under Regular Waves (규칙파 조건에서 케이슨 상치구조물의 설치위치에 따른 파압 특성)

  • Jun, Jae-Hyung;Lee, Suk-Chan;Kim, Do-Sam;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.82-92
    • /
    • 2022
  • In recent years, coastal and port structures have attempted to prevent wave-overtopping or provide waterfront areas by installing superstructures on the structural crowns. In general, in the design stage, the Goda formula acting on the front the structure is applied to calculate the wave pressure acting on the superstructure in consideration of the wave-runup of the design wave. However, the wave pressure exceeding the Goda wave pressure could generate depending on the installation location of the superstructure where the wave-overtopping occurs. This study analyzed the applicability of the Goda formula to the wave pressure calculation for the superstructure of the vertical structures through hydraulic model experiments and numerical simulations. Furthermore, this study investigated the magnitude of the wave pressure acting on the superstructure based on detailed numerical results. As a result, the wave pressure acting on the superstructure was up to 120% higher than the maximum wave pressure on the still water surface. In addition, the wave pressure increases exponentially with the Froude number computed by the overtopping water depth at the crown of the structure, and we proposed an empirical formula for predicting the wave pressure based on the Froude number.

Experimental Study for Downfall Pressure on the Floor behind Rubble-Mound Structure by Wave Overtopping: Non-Breaking Condition (월파에 의한 경사식구조물 배후면에 작용하는 낙하파압에 대한 실험적 연구: 비쇄파조건)

  • Lee, Jong-In;Moon, Gang Il;Kim, Young Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.2
    • /
    • pp.27-36
    • /
    • 2022
  • The large uprush could be occurred when the waves hit the coastal structure and this uprush by wave could make the overtopping. The downfall of the wave overtopping water over the structure brought about the vertical impact loads. The vertical impact loads should be evaluated in order to design the pavement behind the crown wall however these loads were still unclear. In this study, the hydraulic model tests for the downfall impact loads by wave overtopping were performed and the various conditions were applied to the tests. The effect of the incident wave condition, the freeboard, the armour crest height and the height of the parapet were investigated. The test results showed that the parapet on the crown wall could reduce the wave overtopping however the inclusion of parapet could lead to the increased downfall wave pressures behind the crown wall. The empirical formulae were proposed for evaluating the maximum downfall pressures behind the crown wall of rubble mound structure.

Hydraulic Model Experiments and Performance Analysis of Existing Empirical Formulas for Overtopping Discharge on Tetrapod Armored Rubble Mound Structures with Low Relative Freeboard (상대여유고가 낮은 테트라포드 피복 경사제의 월파량에 대한 수리모형실험 및 기존 경험식의 예측성능 분석)

  • Sang-Woo Yoo;Jae-Young Kim;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.3
    • /
    • pp.105-115
    • /
    • 2024
  • In coastal structure design incorporating revetments, the assessment of wave overtopping discharge relies on hydraulic model experiments. Numerous empirical formulas have been developed to predict overtopping discharge based on quantitative data from these experiments. Typically, for revetment structures aimed at mitigating wave overtopping, crest height is determined by considering the maximum amplitude of the design wave, resulting in a relatively high freeboard compared to wave heights. However, achieving complete prevention of all wave overtopping would require the crown wall to have substantial crest heights, rendering it economically impractical. Therefore, the concept of limiting discharge has been introduced in the design of revetment structures, aiming to restrict wave overtopping discharge to an acceptable level. Consequently, many coastal structures in real-world settings feature relatively lower freeboard heights than incident wave heights. This study investigated wave overtopping discharge on rubble-mound breakwaters with relatively low freeboard heights through hydraulic model experiments. Furthermore, it conducted a comparative analysis of the predictive capabilities of existing empirical formulas for estimating overtopping discharge using experimental data.

Reliability Analysis of Sloped Coastal Structures against Random Wave Overtopping (월파에 대한 경사식 해안 구조물의 신뢰성 해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.214-223
    • /
    • 2003
  • A reliability analysis is straightforwardly applied to the sloped coastal structures against the random wave overtopping. A reliability function can be directly derived from a empirical formula in which may take into account many variables associated with the random wave overtopping. The probability of failure exceeded the allowable overtopping discharge can be evaluated as a function of dimensionless crest height with some reasonable statistical properties and distribution functions of each random variable. Some differences of probabilities of failure occurred from variations of the slopes of structures as well as types of armour are investigated into quantitatively. Additionally, the effects of the crest width of units placed in front of the concrete cap on the probability of failure may be analyzed. Finally, the sensitivity analyses are carried out with respect to the uncertainties of random variables. It is found that the overall characteristics similar to the known experimental results are correctly represented in this reliability analyses. Also, it should be noted that the probabilities of failure may be quantitatively obtained for several structural and hydraulic conditions, which never assess in the deterministic design method. Thus, it may be possible for determination on the crest height of sloped coastal structures to consider the probability of failure of wave overtopping, by which may be increased the efficiency of practical design.

Estimate of Wave Overtopping Rate on Vertical Wall Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 직립구조물의 월파량 산정)

  • Kwak, Moon Su;Kobayashi, Nobuhisa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2021
  • This study established a numerical model capable of calculating the wave overtopping rate of coastal structures by nonlinear irregular waves using the FUNWAVE-TVD model, a fully nonlinear Boussinesq equation model. Here, a numerical model was established by coding the mean value approach equations of EurOtop (2018) and empirical formula by Goda (2009), and adding them as subroutines of the FUNWAVE-TVD model. The verification of the model was performed by numerically calculating the wave overtopping rate of nonlinear irregular waves on vertical wall structures and comparing them with the experimental results presented in EurOtop (2018). As a result of the verification, the numerical calculation result according to the EurOtop equation of this model was very well matched with the experimental result in all relative freeboard (Rc/Hmo) range under non-impulsive wave conditions, and the numerical calculation result of empirical formula was evaluated slightly smaller than the experimental result in Rc/Hmo < 0.8 and slightly larger than the experimental result in Rc/Hmo > 0.8. The results of this model were well represented in both the exponential curve and the power curve under impulsive wave conditions. Therefore, it was confirmed that this numerical model can simulate the wave overtopping rate caused by nonlinear irregular waves in an vertical wall structure.

Comparision of Overtopping Performance and Prediction Models for Rubble Mound Breakwaters Armoured Tetrapod (테트라포드로 피복된 사석경사제에서 월파 성능 및 예측모형의 비교)

  • Kim, In-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.397-404
    • /
    • 2010
  • Laboratory tests of wave overtopping rates for a rubble mound breakwaters armoured Tetrapod were carried out, with varying design waves, crest berm widths and crest freeboards. The objective of this study is to investigate overtopping performance and to examine the characteristics of the widely used overtopping prediction models through the results of laboratory tests. Laboratory tests show that structure slope and wave periods have a considerable influence on overtopping rates, but the difference of overtopping rates related to crest berm widths is slight. Owen(1980)'s prediction considerably overestimates compared to the measured valued. Prediction of Van der Meer et al.(1998) underestimates only for steep slope($cot{\alpha}$=1.5). Besley(1999)'s and Pedersen(1996)'s predictions have a relatively good agreement with the measured results for slopes with a broader crest berm width. In general, best agreement between measured and predicted overtopping rates is observed using modified Pedersen(1996)'s formula for all test conditions.

Experimental Study for Overtopping Discharges of Sea Dike having Low Mound and High Wave Wall (LMHW) (낮은 마운드 높이에 높은 상치구조물을 갖는 경사식 호안(LMHW 호안)의 월파량에 대한 실험적 연구)

  • Jung, Jae-Sang;Yoon, Jae-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.335-343
    • /
    • 2019
  • Overtopping discharge for sea dike having low mound and high wave wall (LMHW sea dike) is investigated with hydraulic experiments in this study. Vertical, Flare and Bullnose type wave walls are selected and Tetrapods (double layer) and Accropode (one layer) are adopted for armour layers of the front slope. The results of the hydraulic experiments are compared to the overtopping formulas for armoured rubble slopes and vertical sea dikes suggested by EurOtop Manual. Predicted overtopping discharges are underestimated as the roughness efficiency factors (γf) of armour blocks suggested by EurOtop are adopted when the overtopping formula for armoured rubble slopes sea dike is used. Meanwhile the predicted overtopping discharges agree well with the hydraulic experiments when the modified roughness efficiency factors redefined by multiplying efficiency factor of the heights of armoured crest berm and wave wall (γAR) are adopted. Return wall effects on a vertical wall (Kortenhaus et al., 2003; Pearson et al., 2004a) and the effects on a smooth dike slope (Van Doorslaer et al., 2015) in EurOtop Manual are investigated for Flare and Bullnose type wave walls. As a results of the comparison between experimental results and 2 formulas, return wall effect on a smooth dike was more valid for LMHW sea dike.

Review on Application of Wave Model for Calculation of Freeboard in Hydraulic Structure (수공구조물 여유고 산정을 위한 파랑모형의 적용성 검토)

  • Kim, Kyoung-Ho;Lee, Ho-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.25-30
    • /
    • 2007
  • Most of dams and reservoirs were made from natural materials, such as soil, sand and gravel. This type of hydraulic structure has the danger of collapse by overflow during a flood. Freeboard is the vertical distance between the crest of the dam and the full supply level in the reservoir. It must be sufficient to prevent overtopping from over flow. Thus, freeboard determination involves engineering judgment, statistical analysis, and consideration of the damage that would result from the overtopping of a hydraulic structure. This study attempts to calculate the wave height in dam, which is needed for the determination of the freeboard of the dam. Chung-ju dam is selected as the study area. Using the empirical formulas, the wave heights in dam were calculated, and the results were compared with those by the SWAN model, which is a typical wave model. The difference between the calculated results from the empirical formulas and those by the SWAN model is considerably large. This is because empirical equations consider only fetch or fetch and wind velocity, while the SWAN model considers depth and topography data as well.