DOI QR코드

DOI QR Code

Characteristics of Wave Pressures According to the Installation Location of the Caisson Superstructure under Regular Waves

규칙파 조건에서 케이슨 상치구조물의 설치위치에 따른 파압 특성

  • Jun, Jae-Hyung (Dept. of Civil & Environmental Eng., Korea Maritime and Ocean University) ;
  • Lee, Suk-Chan (Dept. of Civil & Environmental Eng., Korea Maritime and Ocean University) ;
  • Kim, Do-Sam (Dept. of Civil Engineering, Korea Maritime and Ocean University) ;
  • Lee, Kwang-Ho (Dept. of Civil Engineering, Korea Maritime and Ocean University)
  • 전재형 (한국해양대학교 대학원 토목환경공학과) ;
  • 이석찬 (한국해양대학교 대학원 토목환경공학과) ;
  • 김도삼 (한국해양대학교 물류.환경.도시인프라공학부 건설공학전공) ;
  • 이광호 (한국해양대학교 물류.환경.도시인프라공학부 건설공학전공)
  • Received : 2022.03.21
  • Accepted : 2022.06.21
  • Published : 2022.06.30

Abstract

In recent years, coastal and port structures have attempted to prevent wave-overtopping or provide waterfront areas by installing superstructures on the structural crowns. In general, in the design stage, the Goda formula acting on the front the structure is applied to calculate the wave pressure acting on the superstructure in consideration of the wave-runup of the design wave. However, the wave pressure exceeding the Goda wave pressure could generate depending on the installation location of the superstructure where the wave-overtopping occurs. This study analyzed the applicability of the Goda formula to the wave pressure calculation for the superstructure of the vertical structures through hydraulic model experiments and numerical simulations. Furthermore, this study investigated the magnitude of the wave pressure acting on the superstructure based on detailed numerical results. As a result, the wave pressure acting on the superstructure was up to 120% higher than the maximum wave pressure on the still water surface. In addition, the wave pressure increases exponentially with the Froude number computed by the overtopping water depth at the crown of the structure, and we proposed an empirical formula for predicting the wave pressure based on the Froude number.

최근 들어 건설되는 해안·항만구조물의 경우 구조물 마루에 상치구조물 설치를 통해 월파의 발생을 방지하거나 친수공간을 확보하려는 시도가 증가하고 있다. 일반적으로 설계단계에서 상치구조물에 작용하는 파압 산정은 설계파의 처오름을 고려하여 구조물의 전면에 작용하는 Goda 파압식을 적용하고 있다. 하지만, 내습파랑이 구조물의 마루를 월파하는 경우 상치구조물의 설치위치에 따라 Goda 파압을 상회하는 파압이 작용할 수 있다. 본 연구에서는 직립 케이슨을 대상으로 수리모형실험 및 수치모의를 통해 상치구조물에 작용하는 파압산정에 대한 Goda 파압식의 적용성을 분석함과 동시에 상세한 수치모델결과를 기반으로 상치구조물에 작용하는 파압의 크기를 고찰하였다. 그 결과, 상치구조물에 작용하는 파압은 정수면에 작용하는 최대파압에 비해 최대 120%까지 발생함을 확인하였다. 또한, 이러한 상치구조물의 작용파압은 구조물 마루에서 월파수심에 따른 Froude number에 지수함수적으로 증가함을 확인하였으며 Froude number에 기반한 파압의 예측을 위한 경험식을 제안하였다.

Keywords

References

  1. Bihs, H., Kamath, A., Alagan Chella, M., Aggarwal, A. and Arntsen, O.A. (2016). A New Level Set Numerical Wave Tank with Improved Density Interpolation for Complex Wave Hydrodynamics. Computers & Fluids, 140, 191-208. https://doi.org/10.1016/j.compfluid.2016.09.012
  2. Choi, G.H., Jun, J.H., Lee, K.H. and Kim, D.S. (2020). Numerical simulation of wave pressure acting on caisson and wave characteristics near tip of composite breakwater. Journal of Korean Society of Coastal and Ocean Engineers, 32(3), 180-201 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.3.180
  3. Goda, Y. (1974). New Wave Pressure Formulae for Composite Breakwaters, Proceedings of 14th Conference on Coastal Engineering, Copenhagen, Denmark. 1702-1740.
  4. Goda, Y. (1985). Random Seas and Maritime Structures, University of Tokyo Press, 320p.
  5. Ji, C.H., Oh, S.H., Oh, Y.M. and Lee, D.S. (2015). Comparison of the formulas for the wave forces acting on the perforated caisson breakwater. Journal of Korean Society of Coastal and Ocean Engineers, 27(4), 217-227 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.4.217
  6. Jiang, G. and Peng, D. (2000). Weighted ENO Schemes for hamilton jacobi equations. SIAM Journal of Scientific Computing, 21, 2126-2143. https://doi.org/10.1137/S106482759732455X
  7. Kim, T.G., Kim, D.S., Cho, Y.H. and Lee, K.H. (2021). Numerical reproducibility of wave response for an oscillating wave surge converter using inverted triangle flap. Journal of Korean Society of Coastal and Ocean Engineers, 33(5), 203-216 (in Korean). https://doi.org/10.9765/KSCOE.2021.33.5.203
  8. Lee, B.W., Park, W.S. and Ahn, S. (2020). Stability evaluation of rear-parapet caisson breakwaters under regular waves by numerical simulation. Journal of Korean Society of Coastal and Ocean Engineers, 32(2), 95-105 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.2.95
  9. Lee, K.H., Woo, K.H., Kim, D.S. and Jeong, I.H. (2017). Numerical simulation for tsunami force acting on onshore bridge (for Solitary Wave). Journal of Korean Society of Coastal and Ocean Engineers, 29(2), 92-108 (in Korean). https://doi.org/10.9765/KSCOE.2017.29.2.92
  10. Molines, J. Herrera, M.P. and Medina, J.R. (2018). Estimations of wave forces on crown walls based on wave overtopping rates. Coastal Engineering, 132, 50-62. https://doi.org/10.1016/j.coastaleng.2017.11.004
  11. Norgaard, J.Q.H., Lykke-Andersen, T. and Burcharth, H.F. (2013). Wave loads on rubble mound breakwater crown walls in deep and shallow water wave conditions. Coastal Engineering, 80, 137-147. https://doi.org/10.1016/j.coastaleng.2013.06.003
  12. Oh, S.H., Ji, C.H., Oh, Y.M. and Jang, S.C. (2013). Comparison of wave pressure acting on the front wall according to the porosity of caisson breakwater having the cap of wave chamber. KSCE Journal of Civil and Environmental Engineering Research. 33(2), 573-584 (in Korean).
  13. Osher, S. and Sethian, J. (1988). Fronts propagating with curvaturedependent speed: algorithms based on hamilton-jacobi formulation. Journal of Computational Physics, 79, 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
  14. Pedersen, J. and Burcharth, H.F. (1992). Wave Forces on Crown Walls. Proceedings of 23rd Conference on Coastal Engineering, Venice, Italy, 1489-1502.
  15. Shu, C. and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2), 439-471. https://doi.org/10.1016/0021-9991(88)90177-5
  16. Takahashi, S., Shimasako, K. and Sasaki, H. (1991). Experimental study on wave forced acting on perforated wall caisson breakwaters. Rept. Port Habour Res. Inst., 30, 3-34 (In Japanese).
  17. Tanimoto, K., Moto, K., Ishizuka, S. and Goda, Y. (1976). An Investigation on Design Wave Formulae of Composite-type Breakwaters. In Proceedings of the 23rd Conference Coastal Engineering, Honolulu, HI, USA, 11-16.
  18. Wilcox, D.C. (1994). Simulation of transition with a two-equation turbulence model. AIAA Journal, 32(2), 247-255. https://doi.org/10.2514/3.59994