• Title/Summary/Keyword: wave heights

Search Result 292, Processing Time 0.021 seconds

A Numerical Study on Tsunami Run-up Heights on Impermeable/Permeable Slope (투과성 및 불투과성 경사면 상에서 지진해일의 처오름 높이에 관한 수치적 검토)

  • Lee, Woo-Dong;Hur, Dong-Soo;Goo, Nam-Heon
    • Journal of Coastal Disaster Prevention
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In order to examine the characteristics of tsunami run-up heights on impermeable/permeable slope, a numerical wave tank by upgrading LES-WASS-3D was used in this study. Then, the model were compared with existing hydraulic model test for its verification. The numerical results well reproduced experimental results of solitary wave deformation, propagation and run-up height under various conditions. Also, the numerical simulation with a slope boundary condition has been carried out to understand solitary wave run-up on impermeable/permeable slope. It is shown that the run-up heights on permeable slope is 52.64-63.2% smaller than those on the impermeable slope because of wave energy dissipation inside the porous media. In addition, it is revealed that the numerical results with slope boundary condition agreed well with experimental results in comparison with the results by using stair type boundary condition.

Long-term Wave Monitoring and Analysis Off the Coast of Sokcho (속초 연안의 장기 파랑관측 및 분석)

  • Jeong, Weon Mu;Ryu, Kyung-Ho;Cho, Hongyeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.274-279
    • /
    • 2015
  • Wave data acquired over eleven years near Sokcho Harbor located in the central area of the east coast were analyzed using spectral method and wave-by-wave analysis method and its major wave characteristics were examined. Significant wave heights were found to be high in winter and low in summer, and peak periods were also found to be long in winter and short in summer. The maximum significant wave height observed was 8.95 m caused by the East Sea twister. The distributional pattern of the significant wave heights and peak periods were both fitted better by Kernel distribution function than by Generalized Gamma distribution function and Generalized Extreme Value distribution function. The wave data were compiled to subdivide the wave height into intervals for each month, and the cumulative occurrence rates of wave heights were calculated to be utilized for the design and construction works in nearby construction works.

Physical Model Experiment for Estimating Wave Overtopping on a Vertical Seawall under Regular Wave Conditions for On-Site Measurements (현장 월파계측을 위한 규칙파 조건에서 직립식 호안의 월파량 추정에 관한 모형실험)

  • Dong-Hoon Yoo;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.4
    • /
    • pp.75-83
    • /
    • 2023
  • Apart from implementing hardware solutions like raising the crest freeboard of coastal structures to efficiently counter wave-overtopping, there is a simultaneous requirement for software-driven disaster mitigation strategies. These tactics involve the swift and accurate dissemination of wave-overtopping information to the inland regions of coastal zones, enabling the regulation of evacuation procedures and movement. In this study, a method was proposed to estimate wave-overtopping by utilizing the temporal variation of wave heights exceeding the structure's crown level, with the aim of developing an on-site wave measurement system for providing wave-overtopping information in the field. Laboratory model experiments were conducted on vertical seawall structures to measure wave-overtopping volumes and wave runup heights under different wave conditions and structural freeboard variations. By assuming that the velocity of water inundation on the top of the structure during wave-overtopping events is equivalent to the long-wave velocity, an overtopping discharge coefficient was introduced. This coefficient was utilized to estimate the rate of wave-overtopping based on the temporal changes in wave runup heights measured at the top of the structure. Upon reasonably calculating the overtopping discharge coefficient, it was verified that the estimation of wave-overtopping could be achieved solely based on the wave runup heights.

Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network (인공신경망을 이용한 X-Band 레이다 유의파고 추정)

  • Park, Jaeseong;Ahn, Kyungmo;Oh, Chanyeong;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • Wave measurements using X-band radar have many advantages compared to other wave gauges including wave-rider buoy, P-u-v gauge and Acoustic Doppler Current Profiler (ADCP), etc.. For example, radar system has no risk of loss/damage in bad weather conditions, low maintenance cost, and provides spatial distribution of waves from deep to shallow water. This paper presents new methods for estimating significant wave heights of X-band marine radar images using Artificial Neural Network (ANN). We compared the time series of estimated significant wave heights (Hs) using various estimation methods, such as signal-to-noise ratio (${\sqrt{SNR}}$), both and ${\sqrt{SNR}}$ the peak period (TP), and ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k). The estimated significant wave heights of the X-band images were compared with wave measurement using ADCP(AWC: Acoustic Wave and Current Profiler) at Hujeong Beach, Uljin, Korea. Estimation of Hs using ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k) yields best result.

New procedure for determining equivalent deep-water wave height and design wave heights under irregular wave conditions

  • Kang, Haneul;Chun, Insik;Oh, Byungcheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.168-177
    • /
    • 2020
  • Many coastal engineering designs utilize empirical formulas containing the Equivalent Deep-water Wave Height (EDWH), which is normally given a priori. However, no studies have explicitly discussed a method for determining the EDWH and the resulting design wave heights (DEWH) under irregular wave conditions. Unfortunately, it has been the case in many design practices that the EDWH is incorrectly estimated by dividing the Shallow-water Wave Height (SWH) at the structural position with its corresponding shoaling coefficient of regular wave. The present study reexamines the relationship between the Shallow-water Wave Height (SWH) at the structural position and its corresponding EDWH. Then, a new procedure is proposed to facilitate the correct estimation of EDWH. In this procedure, the EDWH and DEWH are determined differently according to the wave propagation model used to estimate the SWH. For this, Goda's original method for nonlinear irregular wave deformation is extended to produce values for linear shoaling. Finally, exemplary calculations are performed to assess the possible errors caused by a misuse of the wave height calculation procedure. The relative errors with respect to the correct values could exceed 20%, potentially leading to a significant under-design of coastal or harbor structures in some cases.

Statisticall Characteristics of Sea Waves at Mookho (묵호항의 파랑특성)

  • 심명필;안수한
    • Water for future
    • /
    • v.10 no.1
    • /
    • pp.101-117
    • /
    • 1977
  • The statatistical characteristics and spectra of sea waves at Mookho were analysed by several statistical methods. As the results, the following conclusions are obtained: 1. Values of surface elevation of sea wave are better fitted to Gram Charlier distribution than Gaussian distribution. This proves that sea waves have not only characters of irregularity but also non-linearity. 2. Distribution of maxima of surface elevation practically follows the distribution of Cartwright and Longuet-Higgins, also spectral width parameter is found to be increased with the increase of root mean square of surface elevation. 3. Sea wave may have spectrum of broad frequency band, however distributions of wave heights and periods follow the Rayleigh distribution which is derived from the assumption of narrow frequency band. 4. Ratios among mean wave heights from observed data show good agreements with theoretical values from Rayleigh distribution. 5. Spectral density and spectral width parameter increase with increase of wind velocity. And wave period at optimum band gas higher value than significant wave period by about 10 percent.

  • PDF

Numerical Study on Characteristics of Ship Wave According to Shape of Waterway Section

  • Hong Chun-Beom;Lee Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2263-2269
    • /
    • 2005
  • The ship wave phenomena in the restricted waterway were investigated by a numerical analysis. The Euler and continuity equations were employed for the present study. The boundary fitted and moving grid system was adopted to enhance the computational efficiency. The convective terms in the governing equations and the kinematic free surface boundary condition were solved by the Constrained Interpolated Profile (CIP) algorithm in order to solve accurately wave heights in far field as well as near field. The advantage of the CIP method was verified by the comparison of the computed results by the CIP and the Maker and Cell (MAC) method. The free surface flow simulation around Wigley hull was performed and compared with the experiment for the sake of the validation of the numerical method. The present numerical scheme was applied to the free surface simulation for various canal sections in order to understand the effect of the sectional shape of waterways on the ship waves. The wave heights on the side wall and the shape of the wave patterns with their characteristics of flow are discussed.

Characteristics of Storm Waves at Gangneung port Based on the Wave Hindcasting (파랑 후측 모의 실험 기반 강릉항 폭풍파랑 분석)

  • Ahn, Kyungmo;Hwang, Soon-mi;Chun, Hwusub
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.375-382
    • /
    • 2016
  • In the present study, the wave hindcasting has been performed, and then the characteristics of storm waves at Gangnueng port was investigated, in which the high waves are observed. Comparing the numerical results with the wave measurements at Gangneung port, Niigata, and Hamada, there were good agreements between them. In particular, the Pearson correlation coefficients of significant wave heights and peak periods at Gangneung port were 0.92 and 0.72, respectively. Then the extreme wave analysis on the significant wave heights was carried out for the estimation of the frequency of storm waves. In this analysis, the storm waves over the threshold were fitted to GPD(Generalized Pareto Distribution). According to this analysis, the return period of the storm wave on February, 24, 2008, one of the large storm waves at Gangneung port, was 8.2 months. Among the computed significant wave heights larger than one-year wave, 58.3% of them were resulted from the storm, while the others were from the typhoon. Additionally, the regression analysis on the waves larger than one-month wave has been conducted, and then the relationship between the computed significant wave heights and the significant wave period, $T_{1/3}=7H_s^{0.25}$ was obtained.

Run-up of Cnoidal Waves on Steep Slopes (급경사에서 크노이드파의 처오름)

  • 조용식;윤태훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 1996
  • The accurate calculation of run-up heights of long waves along the coastline is important in the view of engineering. In this paper the run-up heights of long waves are estimated by using the cnoidal wave theory which also covers both sinusoidal and solitary waves. However, the generation and the calculation of run-up heights of cnoidal waves are difficult both in laboratory and numerical experiments. In this study, the maximum run-up heights of cnoidal waves on steep slopes are computed by using the boundary integral equation model. It has been shown that the run-up heights of cnoidal waves are less than those of solitary waves, while they are larger than those of sinusoidal waves having the same wavelengths and heights. The variation of run-up heights of cnoidal waves is not a monotonic function of the wavelength. However, the run-up heights of cnoidal waves asymptotically approach that of a solitary wave as the wavelength approaches infinity. The calculated run-up heights agreed reasonably with experimental data.

  • PDF

Hydraulic Model Experiments and Performance Analysis of Existing Empirical Formulas for Overtopping Discharge on Tetrapod Armored Rubble Mound Structures with Low Relative Freeboard (상대여유고가 낮은 테트라포드 피복 경사제의 월파량에 대한 수리모형실험 및 기존 경험식의 예측성능 분석)

  • Sang-Woo Yoo;Jae-Young Kim;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.3
    • /
    • pp.105-115
    • /
    • 2024
  • In coastal structure design incorporating revetments, the assessment of wave overtopping discharge relies on hydraulic model experiments. Numerous empirical formulas have been developed to predict overtopping discharge based on quantitative data from these experiments. Typically, for revetment structures aimed at mitigating wave overtopping, crest height is determined by considering the maximum amplitude of the design wave, resulting in a relatively high freeboard compared to wave heights. However, achieving complete prevention of all wave overtopping would require the crown wall to have substantial crest heights, rendering it economically impractical. Therefore, the concept of limiting discharge has been introduced in the design of revetment structures, aiming to restrict wave overtopping discharge to an acceptable level. Consequently, many coastal structures in real-world settings feature relatively lower freeboard heights than incident wave heights. This study investigated wave overtopping discharge on rubble-mound breakwaters with relatively low freeboard heights through hydraulic model experiments. Furthermore, it conducted a comparative analysis of the predictive capabilities of existing empirical formulas for estimating overtopping discharge using experimental data.