• Title/Summary/Keyword: wave height energy

Search Result 252, Processing Time 0.033 seconds

Numerical Simulation of Three-Dimensional Wave-Current Interactions Due to Permeable Submerged Breakwaters by Using olaFLOW (olaFLOW를 활용한 투과성잠제에 의한 3차원적 파-흐름의 수치시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.166-179
    • /
    • 2018
  • This study aims at numerically investigating the water-surface characteristics such as wave height distribution depending on the current direction around the three-dimensional permeable submerged breakwaters in wave-current coexisting field which has not been considered in detail so far. In addition, the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy, which act as the main external forces of formation of salient, are also examined. For numerical analysis, olaFlow which is open source code of CFD was used and the numerical tests included different types of target waves, both regular waves and irregular waves. Numerical results indicated that wave height variation with wave following or opposing a current behind the submerged breakwater is closely related to turbulent kinetic energy. Furthermore, it was found that weaker longshore currents are formed under wave-current coexisting field compared to the non-current conditions, and transport flow is attenuated. As a result, it was possible to understand the influence of current existence and direction (following and opposing) on the formation of the salient formed behind the submerged breakwaters.

Dynamic Analysis of Wave Energy Generation System by Using Multibody Dynamics (다물체 동역학을 이용한 파력발전기의 동적거동 분석)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1579-1584
    • /
    • 2011
  • This paper discusses an energy system that can convert wave energy into electrical energy. This wave energy generation system is movable and has 12 arms and one generator. A multibody dynamic model for this system is established by using kinematic constraints. A gear mechanism, several kinematic constraints, and force elements are included in the model. Wave forces are obtained numerically from the time domain formulation based on the Morison equation. The MSC/ADAMS program is employed to carry out dynamic analysis of the wave energy generation system. The dynamic behavior responses of this system are analyzed for design verification. According to the results of the dynamic analysis, the yaw motion is relatively stable and kinetic energy sufficient to generate electrical energy is obtained when the wave height exceeds 1m.

Analysis of Hydraulic Characteristics According to the Cross-Section Changes in Submerged Rigid Vegetation

  • Lee, Jeongheum;Jeong, Yeon-Myeong;Kim, Jun-Seok;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.326-339
    • /
    • 2022
  • Recently, not only Korea but also the world has been suffering from problems related to coastal erosion. The hard defense method has been primarily used as a countermeasure against erosion. However, this method is expensive and has environmental implications. Hence, interest in other alternative methods, such as the eco-friendly vegetation method, is increasing. In this study, we aim to analyze the hydraulic characteristic of submerged rigid vegetation according to the cross-sectional change through a hydraulic experiment and numerical simulation. From the hydraulic experiment, the reflection coefficient, transmission coefficient, and energy dissipation coefficient were analyzed according to the density, width, and multi-row arrangement of the vegetation zone. From numerical simulations, the flow field, vorticity distribution, turbulence distribution, and wave distribution around the vegetation zone were analyzed according to the crest depth, width, density, and multi-row arrangement distance of the vegetation zone. The hydraulic experiment results suggest that the transmission coefficient decreased as the density and width of the vegetation zone increased, and the multi-row arrangement condition did not affect the hydraulic characteristics significantly. Moreover, the numerical simulations showed that as the crest depth decreased, the width and density of vegetation increased along with vorticity and turbulence intensity, resulting in increased wave height attenuation performance. Additionally, there was no significant difference in vorticity, turbulence intensity, and wave height attenuation performance based on the multi-row arrangement distance. Overall, in the case of submerged rigid vegetation, the wave energy attenuation performance increased as the density and width of the vegetation zone increased and crest depth decreased. However, the multi-row arrangement condition did not affect the wave energy attenuation performance significantly.

Characteristics of long-period swells measured in the near shore regions of eastern Arabian Sea

  • Glejin, Johnson;Kumar, V. Sanil;Amrutha, M.M.;Singh, Jai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.312-319
    • /
    • 2016
  • Measured wave data covering two years simultaneously at 3 locations along the eastern Arabian Sea reveals the presence of long-period (peak wave period > 18 s) low-amplitude waves (significant wave height < 1 m) and the characteristics of these waves are described in this article. In a year, 1.4-3.6% of the time, the low-amplitude long-period swells were observed, and these waves were mainly during the nonmonsoon period. The wave spectra during these long-period swells were multi-peaked with peak wave period around 18.2 s, the secondary peak period around 13.3 s and the wind-sea peak period at 5 s. The ratio of the spectral energy of the wind-sea peak and the primary peak (swell) was slightly higher at the northern location (0.2) than that at the southern location (0.15) due to the higher wind speed present at the northern location.

Experiments for the Characteristic Evaluation of Pollutant Transport in Tidal Influenced Region (조파역내 오염물 이동특성 평가 실험)

  • Park, Geon Hyeong;Kim, Ki Chul;Jung, Sung Hee;Suh, Kyung Suk
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • The characteristics for pollutant transport in tidal influenced area was investigated using tidal wave hydraulic scale model. Hydraulic scale model was composed of the tidal generator, attenuation area and channel. Also, wave height, current meter and conductivity meter were used with the measured instruments in hydraulic scale model. NaCl with a tracer was used to evaluate the advection phenomena under the different velocity profiles. The arrival time of the maximum concentration in the condition of the relatively fast velocity was measured about 30 seconds faster than ones in the conditions of low velocity. The measured concentrations of the tracer were shown in the detection points of the flow direction consecutively.

Correlation Analysis between Wave Parameters using Wave Data Observed in HeMOSU-1&2 (HeMOSU-1&2의 파랑 관측 자료를 이용한 파랑 변수 간 상관관계 분석)

  • Lee, Uk-Jae;Ko, Dong-Hui;Cho, Hong-Yeon;Oh, Nam-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.139-147
    • /
    • 2021
  • In this study, waves were defined using the water surface elevation data observed from the HeMOSU-1 and 2 marine meteorological observation towers installed on the west coast of Korea, and correlation analysis was performed between wave parameters. The wave height and wave period were determined using the wave-train analysis method and the wave spectrum analysis method, and the relationship between the wave parameters was calculated and compared with the previous study. In the relation between representative wave heights, most of the correlation coefficients between waves showed a difference of less than 0.1% in error rate compared to the previous study, and the maximum wave height showed a difference of up to 29%. In addition, as a result of the correlation analysis between the wave periods, the peak period was estimated to be abnormally large at rates of 2.5% and 1.3% in HeMOSU-1&2, respectively, due to the effect of the bimodal spectrum that occurs when the spectral energy density is small.

Analysis and Quantification of Seawater Infiltration by Wave Action in Coastal Zone (연안해역에서 파도에 의한 해수 침투이론의 비교와 정량화)

  • Cheong Cheong-jo;Choi Doo-hyoung;Kim Tae-keun;Okada Mitsumasa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.3-11
    • /
    • 2001
  • To know the seawater infiltration into tidal flat sediment in coastal area is very important, because it is significantly correlated with the infiltration and transportation of pollutants in soil, the supply of dissolved oxygen, nutrients and organic matter to benthic organisms for survival of benthic organisms and the seawater purification. So, we set up purpose to clarify the infiltration behavior of seawater by wave action in tidal flat, to clear the effects of slope of tidal flat and breaking wave height on seawater infiltration and to quantify the infiltration volume of seawater. For purpose, the seawater infiltration was studied with visualization method by using coloring tracer and transparent glass beads replaced as natural sediment in model tidal flat. Specific conclusions derived from this study are as follows. The semi-circular type infiltration of seawater by wave action into saturated sediment was a new infiltration behavior that was not considered in previous studies. The infiltration rate of seawater was increased with increasing of breaking wave height and slope of tidal flat. However, the effects of the slope was bigger than that of breaking wave height on seawater infiltration into tidal flat sediments. It was possible to calculate the infiltration volume of seawater by wave action in natural tidal flat sediment and in fields. Therefore, we can point out that wave action play an important role in the supply of dissolved oxygen, nutrients and organic matter to benthic organisms, transportation or diffusion of pollutants and seawater purification. So, we hope to be studied the supply of food to benthic organism, pollutant transport and seawater purification on the base of these results.

  • PDF

Measurements of Storm Waves Generated by Typhoons Passed through Eastside of Korea Strait from 2004 to 2006 (2004~2006년 대한해협 동쪽을 통과한 태풍들에 의한 폭풍파 관측)

  • Jeong, Weon Mu;Kim, Sang Ik;Baek, Won Dae;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.2
    • /
    • pp.65-71
    • /
    • 2014
  • In recent years, strong typhoons have passed South Korea almost every year and severe damages were incurred directly and indirectly. However, instances where wave and wind data were procured from the offshore approach path of the typhoon are very rare and thus researchers are experiencing difficulties in obtaining calibration and verification data of typhoon-generated wave modeling. This paper provides a synthesis of records of observations by the Korea Meteorological Administration and Korea Institute of Ocean Science and Technology on storm waves generated by the typhoons SONGDA, NABI, and SHANSHAN that passed from 2004 to 2006 in order to help researchers interested in typhoon-generated wave numerical modeling. Although the trajectories of typhoon NABI and SHANSHAN were east of the Korea Strait, a significant wave height of 8.3 m was measured at Namhyeongjedo located east of Geojedo. Moreover, an unprecedented significant wave height of 12.2 m was measured for both typhoons at a station 1.4 km away from Yeongil Bay breakwater. Meanwhile, a comparative analysis of data obtained with a ocean data buoy at Geojedo and a Directional Waverider at Namhyeongjedo showed maximum wave heights that were similar but considerably different significant wave heights.

A Fundamental Investigation on the Marine Environmental Conditions of Bathing Beach in Jeju (제주도 사빈 해수욕장의 해양환경 조건에 관한 기초조사)

  • Kim Nam-Hyeong;Jang Seong-Hun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.3
    • /
    • pp.53-64
    • /
    • 2001
  • Bathing beach may be one of the ocean resorts in popular, which peoples can easily access in summer. Three beaches in Jeiu island are surveyed about natural environmental conditions using coastal engineering technique and questionnaire are carried out. Also the satisfaction index on the sand size, wave height, water temperature, transparency and bottom slope is gained very well. The results obtained from this study can be utilized making a new artificial bathing beach in the future.

  • PDF

Assessment of Water Piling-up behind a Submerged Breakwater during Storm Events (단기 태·폭풍 기인 잠제 배후의 Piling-up 현상 평가)

  • Son, Donghwi;Yoo, Jeseon;Kim, Mujong
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.203-210
    • /
    • 2018
  • It is generally known that submerged breakwaters can reduce the incoming wave energy without disturbing the beach scenery. However, a submerged breakwater is also able to cause a setup of the sea level in the protected area which is also called as water piling-up. Since the piling-up can result in longshore currents, sediment transports, and unexpected beach erosion, understanding about the piling-up process is required prior to designing the nearshore structures. In this study, the water piling-up behind a submerged breakwater is assessed in the time of storm events. For the study area, Anmok beach in Gyeonso-dong, Gangwon-do is selected. 1-year, 5-year, 10-year, and 50-year return-values were derived from Peaks-Over-Threshold(POT) method and those are applied as offshore boundary conditions for the numerical simulation. The numerical results of the piling-up were assessed with regard to the wave steepness and the height of the submerged breakwater. With increase of both significant wave height and the height of the submerged breakwater, the piling-up parameter is also increased which can lead to erosion of dry beach behind the structure.