• Title/Summary/Keyword: water-purification

Search Result 1,034, Processing Time 0.032 seconds

Research Trend of Membrane for Water Treatment by Analysis of Patent and Papers Publication (특허 및 논문 게재 분석을 통한 수처리용 분리막의 연구동향)

  • Woo, Chang Hwa
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.410-419
    • /
    • 2017
  • Since the beginning of the water shortage by disasters such as global warming, environmental pollution, and drought, development of original technology and studies have been undergone to increase availability of water resources. Among them the water treatment separation membrane technology is an environmentally friendly process that does not use chemicals and shows better water quality improvement effect than conventional physicochemical and biological processes. The water treatment membrane can be applied to various fields such as waste water treatment, water purification treatment, seawater desalination, ion exchange process, ultrapure water production, organic solvent separation and water treatment technology, and it tends to expand the range of application. In the core technology of water treatment membrane, researches are being actively carried out to develop a separation membrane of better performance by controlling the pore size to adjust the separation performance. In this review, we summarized the frequency of announcement by country and organization through the technological competitiveness evaluation of patents and papers of the water separation membrane. Also, we evaluated the results from membrane research for waste water treatment, water purification treatment, seawater desalination, ion exchange process and present the future direction of research.

Removal of Geosmin Forming Alga (Anabaena macrospora) by Copper Sulfate (CuSO4에 의한 geosmin 유발조류(Anabaena macrospora)의 제거)

  • Park, Jae-Chung;Park, Jae-Bum;Song, Sung-Il;Kim, Hyun-Suk;Park, Jung-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.521-526
    • /
    • 2006
  • We have studied the possibility of removing Anabaena macrospora by injecting copper sulfate ($CuSO_4{\cdot}5H_2O$) into the raw water of a drinking water purification plant. Anabaena macrospora caused the unpleasant geosmin odor of drinking water in August 2001. The cell break-point of A. macrospora was 0.3 mg/L of $CuSO_4$. We were able to reduce the standing crops of A. macrospora effectively because $CuSO_4$ could break A. macrospora selectively. Because 0.3 mg/L of $CuSO_4$ could break both cells and akinetes, it reduced the possibility of a recurrent problem for them to meet a favorable condition. When $CuSO_4$ was injected in the early growth phase of algae and the mixing intensity was high, A. macrospora could be removed most effectively. The odor caused by A. macrospora was sustained for a while without any sudden change of environmental condition. Therefore, we hope that it could shorten the period of obstacle by injecting the optimal amount of 0.3 mg/L of $CuSO_4$. The water quality, alkalinity, conductivity, hardness and pH didn't changed by the injection of $CuSO_4$.

The Purification Characteristics of Reactive Soil-Bentonite Landfill Liner (혼합반응 차수재의 오염정화특성)

  • 김학문
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.398-403
    • /
    • 2003
  • The purpose of this paper is to investigate purification characteristic of soil-bentonite landfill liner and to develop a desirable liner system. In order to clarify the purification characteristics, high pressure column tests using soil-bentonite, reactive soil-bentonite and reactive bentomat were carried out in the presence of water and leachate. The test results indicated that the significant amount of NH$_3$-N, Pb and Cu was removed through the reactive soil-bentonite liner system.

  • PDF

Analysis of Water Purification Capability of the Spent Fuel Storage Pool Using Consolidated Fuel Storage in Uljin 1&2 (조밀화 핵연료 집합체 저장에 의한 울진 1&2호기의 사용후 핵연료 저장조 정화능력 해석)

  • Lim, Chae-Joon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.83-94
    • /
    • 1990
  • The radioactivity in the spent fuel storage pool is calculated to ensure to maintain its concentration below the permissible limit, when the storage capacity of Uljin nuclear power plant unit 1&2 is extended from 9/3 to 32/3 core using consolidated fuels in maximum density rack (MDR). For this evalulation, two models to calculate the spent fuel pool activities on the continuous and intermittent operating its purification system are developed and these results compared, The results of above two cases show that the current water purification system can not guarantee the radioactivity concentration below the design limit, 5$\times$10$^{-4}$ $\mu$Ci/ml, for the extention to 32/3 core. Therefore, it has been concluded that a modification of the current purification system is necessary to extend the spent fuel storage capacity with the above method. The alternative way suggested in this study is to increase the number of cation bed demineralizers.

  • PDF

The Application of the Sewage, Sanitary Sewage and Wastewater Processing by Soil Purification Theory (토양정화법을 이용한 하.오수 및 폐수 처리의 현장적용성에 관한 연구)

  • Chun, Byungsik;Yoo, Junhee;Kim, Jungyong;Kumar, S;Shin, Sanguok;Shin, Bangwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.77-84
    • /
    • 2008
  • Soil purification theory is the method using the soil micro-organism like aerobic and anaerobic for treatment of wastewater. The soil has many kinds of micro-organism and it multiply as change of the environment. Unlikely other methods, the soil purification theory is adaptable to inflow water change; moreover, it can process the T-N, T-P without any special method and management. The top is covered with the improved soil which can remove the bad smell and is used for resting place according to planting the lawn. This study is focused on analysis of the treatment processing of wastewater comparing inflow with outflow water. As a results, removal rate of the processing the BOD, COD and SS is almost 90~100% and it is 60~80% in T-N, T-P.

  • PDF

Application of simple and massive purification system of dsRNA in vivo for acute toxicity to Daphnia magna

  • CHOI, Wonkyun;LIM, Hye Song;KIM, Jin;RYU, Sung-Min;LEE, Jung Ro
    • Entomological Research
    • /
    • v.48 no.6
    • /
    • pp.533-539
    • /
    • 2018
  • The RNA interference (RNAi) has been considered as an important genetic tool and applied to develop a new living modified (LM) crop trait which is an improvement of nutrient quality or pest management. The RNAi of DvSnf7 has been used for resistance to LM maize and the Western Corn Rootworm which is a major agricultural pest for the US Corn Belt. Most of the environmental risk assessments (ERA) of double strand RNA (dsRNA) have been performed using in vitro transcript products, and not in vivo expressed product. A large amount of dsRNA was required for the acute toxicity assay of water fleas. Therefore development of massive dsRNA purification techniques is critical. Daphnia, a freshwater microcrustacean, is a model organism for studying cellular and molecular mechanism involved in life history traits and ecotoxicology. In this study, we established the massive dsRNA purification method using Escherichia coli and implemented acute toxicity assays to Daphnia magna. As a result, the present RNase A and DNase I, dsRNA was efficiently purified without any special techniques or equipment. Even though purified dsRNA existed during the acute toxicity test, lethality or abnormal behavior were not observed in D. magna. These results indicated that GFP and DvSnf7 dsRNA were not significantly affected to D. magna due to their lack of sequence matching in its genome. The purification method of dsRNA and the acute toxicity assay of water fleas using purified dsRNA would be suitable for the toxicological studies of LMOs to aquatic non-target organisms.

Assessment of Field Applicability of a Zero Discharge and Reuse System (무방류 재이용 시스템 현장 적용성 평가)

  • Cho, Kyung-Sook;Lee, Kwang-Ya
    • Current Research on Agriculture and Life Sciences
    • /
    • v.29
    • /
    • pp.75-81
    • /
    • 2011
  • This study performed field examinations of a zero discharge and reuse system developed by Hong and Choi(2009). The system installed one of villages located in Hyoryeong-myeon, Gunwee-gun for the experiments. The zero discharge and reuse system consists of anoxic, FES (Ferrous Electricity System), Oxic, Cralifier processes for water treatments. The main feature of the system is to remove phosphorous by using Fe-ionizing module within the FES process. The water purification performances of the system were evaluated, while any defects for using the system were investigated through the field monitoring. It was found that the removal capacities of T-P, T-N, and BOD of the system meet the required water quality with outstanding performance from T-P by obtaining the results of over 90 % removal rates. The efficiency of T-P removal rate of the system found to be greatly influenced by whether using an automatic washing system to the Fe-ionizing module and conducting replacement of iron plate within a proper period.

  • PDF

Development of Environmentally Favorable Porous Concrete and Water Purification Characteristics by the Pavement System (친환경 도로포장용 투수콘크리트의 제조와 이를 이용한 도로포장시스템의 수질정화특성)

  • Hong, Chong-Hyun;Kim, Moon-Hoon;Yang, Churl-Shin
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1045-1052
    • /
    • 2006
  • Stormwater pollution is a major problem in urban areas. Pollutants like heavy metals and harmful chemicals in the runoff can endanger soil and ground water, when they are not sufficiently removed doting infiltration. Strength and infiltration capacity of porous concrete are the major problems that must be considered if permeable pavement system are demanded to be used in a drive way application. In this study, a series of compacted porous concrete mixtures and the system of pavement ate tested for the physical characteristics like compressive strength, flexural strength, unit weight, porosity, water permeability, and the purification capacity of contaminated water. The test results obtained indicate that the strength and infiltration capacity of porous concrete are strongly related to its matrix proportion and compaction energy and providing adequate filter layers underneath pavement surface course is one of the most important design considerations of permeable pavement system for pollution retention purpose.