• Title/Summary/Keyword: water-keeping test

Search Result 54, Processing Time 0.023 seconds

Hydraulic Characteristics of the Non-power Soil Cleaning and Keeping System by the Large-Scale Model Test at the Dike Gate (배수문에서 실내모형실험에 의한 무동력 토사제거시스템의 수리 특성)

  • Park, Chan Keun;Oh, Beom Hwan;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the large-scale hydraulic model test was performed to investigate the hydraulic characteristics for development of the non-power soil cleaning and keeping system at the dike gate. The outlet height, outflow number, outflow discharge, and outflow cycle were compared and analyzed. The non-power soil cleaning and keeping system was most effective at 11.2 mm in the outlet height. And then the mean outflow cycle was 1.09 sec, and the mean outflow discharge was $0.00164m^3/s$. The total outflow number increased gradually as the water level of a water tank increased, and the outlet height decreased. As a level of water tank decreased, the mean outflow cycle was lengthened, and the unit outflow discharge increased. This result showed this system was most effective. To remove the silty clay deposited in facilities, the methods of excavation, dredging, high pressure washing, etc have been applied to the tidal facilities such as land reclamation, a small size fishing port, and a harbor for maintenance. However, this is extremely cost-ineffective, whereas the non-power soil cleaning and keeping system will bring about an enormously positive economic effect. In addition, when the non-power soil cleaning and keeping system is applied to the dike gate of land reclamation, a thorough examination of the local tidal data and the careful system planning are required to prevent the disaster damage caused by flooding.

Effect of constant loading on unsaturated soil under water infiltration conditions

  • Rasool, Ali Murtaza;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-232
    • /
    • 2020
  • In many tropical regions, soil structures often fail under constant loads as a result of decreasing matric suction due to water infiltration. Most of the previous studies have been performed by infiltrating water in the soil specimen by keeping shear stress constant at 85-90% of peak shear strength in order to ensure specimen failure during water infiltration. However, not many studies are available to simulate the soil behavior when water is infiltrated at lower shear stress and how the deformations affect the soil behavior if the failure did not occur during water infiltration. This research aimed at understanding both the strength and deformation behavior of unsaturated soil during the course of water infiltration at 25%, 50% and 75% of maximum deviatoric stress and axial strain by keeping them constant. A unique stress-strain curve expresses the transient situation from unsaturated condition to failure state due to water infiltration is also drawn. The shearing-infiltration test results indicate that the water infiltration reduces matric suction and increase soil deformation. This research also indicates that unsaturated soil failure problems should not always be treated as shear strength problems but deformation should also be considered while addressing the problems related to unsaturated soils.

A feasibility study on the application of turtle boat form to the incinerating vessel (거북선 형상의 해상소각선 실용화 가능성에 관한 연구)

  • 이귀주;최영빈
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.95-99
    • /
    • 1997
  • In these days, the pollution of marine environment near island at Korean coastal zone caused by the trash human waste and livestocks excreata become intensified. One of the most economic and efficient way to prevent this pollution problem is to set up island circulating incineration system. In this paper, the result of feasibility study on the application of turtle boat hull form to the incinerating vessel has been summarized especially for the resistance and course keeping point of view.

  • PDF

Status and Prospect of Test Methods of Quality Silicone Water Repellent for Protecting Reinforced Concrete

  • Sun, H.Y.;Yuan, Z.Y.;Yang, Z.;Shan, G.L.;Shen, M.X.
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.141-150
    • /
    • 2017
  • Impregnating with quality silicone water repellent on the concrete surface is an effective method of protecting concrete. Quality silicone water repellent has been widely used in the engineering profession because of its desirable properties such as hydrophobicity, keeping concrete breathable and preserving the original appearance of the concrete. The companies in China that produce silicone water repellent are listed. Test methods in the specifications or standards about silicone water repellent in China are summed. The test methods relative to durability of concrete impregnated with silicone water repellent (such as resistant to chloride ion penetration, resistant to alkali, resistance to freezing and thawing and weatherability etc.) and the constructive quality (such as water absorption rate, impregnating depth and the dry velocity coefficient etc.) are compared and analyzed. The results indicate that there are differences among test methods relative to different specifications with the same index and therefore, confusion has ensued when selecting test methods. All test methods with the exception of the method of water absorption rate by using a Karsten flask are not non-destructive methods or conducted in a laboratory. Finally, further research on silicone water repellent during application is proposed.

A Study on Leaching Characteristics of Paraffin Waste Form Including Boric Acid

  • Kim, Ju-Youl;Chung, Chang-Hyun;Park, Heui-Joo;Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.10-16
    • /
    • 2000
  • Preliminary experiment was peformed to investigate the leaching characteristics of paraffin waste forms that had been recently generated in large quantities at domestic nuclear power plants. At first, waste simulants whose compositions were different in mixing ratio of paraffin to boric acid were prepared. Their compressive strengths were measured and ninety-day leaching test of specimen including cobalt was carried out according to ANSI/ANS-16.1 test procedure. Water immersion test was also conducted keeping pace with leaching test and the weight change and the compressive strength of specimen were observed after ninety days. The compressive strength of waste form exhibited 666 psi (4.53 MPa) in the case where mixing ratio of boric acid to paraffin was 78/22, which was adopted in concentrate waste drying system of domestic nuclear power plants. The leaching test resulted in about 50% of the cumulative fraction leached for boric acid and cobalt, respectively. The specific gravity of waste form was 0.87 [g/g]whose value was less than that of water because the weight loss of about 39% occurred after the water immersion test of ninety days. It was also observed that the waste form which had undergone ninety-day water immersion test exhibited the compressive strength of 203 psi (1.38 MPa).

  • PDF

Development of Hovering AUV Test-bed for Underwater Explorations and Operations

  • Byun, Seung-Woo;Choi, Hyeung-Sik;Kim, Joon-Young
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.218-224
    • /
    • 2013
  • This paper describes the design and control of a hovering AUV test-bed and analyzes the dynamic performance of the vehicle using simulation programs. The main purpose of this vehicle is to carry out fundamental tests of its station keeping, attitude control, and desired position tracking. Its configuration is similar to the general appearance of an ROV for underwater operations, and its dimensions are $0.75m{\times}0.5m{\times}0.5m$. It has four 450-W thrusters for longitudinal/lateral/vertical propulsion and is equipped with a pressure sensor for measuring the water depth and a magnetic compass for measuring its heading angle. The navigation of the vehicle is controlled by an onboard Pentium III-class computer, which runs with the help of the Windows XP operating system. This provides an appropriate environment for developing the various algorithms needed for developing and advancing a hovering AUV.

A Study on the Performance Valuation of Small Size Water Storage Electric Boiler (소형 수축열식 전기 보일러의 성능 평가에 대한 연구)

  • Mo, Jong-Gun;Shin, Jae-Ho;Bae, Chul-Whan;Suh, Jeong-Se;Chung, Han-Sik;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1524-1529
    • /
    • 2003
  • We was made 150L an water storage electric boiler and obtained various performances of the storage, radiant and keeping by experimentation, The storage performance is that the heat were off about 50 minutes after heating start, Then the temperature of outlet was arrived the stead state at $91^{\circ}C$ and the storage performances was appeared 93.64%, In the radiant performance, the water temperature was decreased from $90^{\circ}C$ to $44.8^{\circ}C$ after 960 minutes, Then the calorific value changed from 675kcal/h to 72kcal/h and the temperature decreased about 50%, The keeping performance showed mean temperature, $67.06^{\circ}C$ according to progress 800 minutes and the maximum temperature drop were $0.2^{\circ}C$, By the results of the performance valuation, the water storage electric boiler was verified fitted quality on the test prescription of KERI(Korea Electrotechnology Research Institute).

  • PDF

Planar Motion Mechanism Test of the Mobile Harbor Running in Design Speed in Circulating Water Channel

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.525-532
    • /
    • 2010
  • Mobile Harbor (MH) is a new transportation platform that can load and unload containers onto and from very large container ships at sea. It could navigate near harbors where several vessels run, or it could navigate through very narrow channels. In the conceptual design phase when the candidate design changes frequently according to the various performance requirements, it is very expensive and time-consuming to carry out model tests using a large model in a large towing tank and a free-running model test in a large maneuvering basin. In this paper, a new Planar Motion Mechanism(PMM) test in a Circulating Water Channel (CWC) was conducted in order to determine the hydrodynamic coefficients of the MH. To do this, PMM devices including three-component load cells and inertia tare device were designed and manufactured, and various tests of the MH such as static drift test, pure sway test, pure yaw test, and drift-and-yaw combined test were carried out. Using those coefficients, course-keeping stability was analyzed. In addition, the PMM tests results carried out for the same KCS (KRISO container ship) were compared with our results in order to confirm the test validity.

Experimental Investigation on Air-Distribution in a Water-Flowing through a G1-Rod Bundle with Helical Spacers

  • Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 1978
  • The object of this study was to obtain data on air-distributions in two-phase up flow in vertical rod-bundle test-section. The test-section in this study was a hexagonal shaped 61-rod bundle where each rod was wrapped with helical spacers. The variables were flow rates of air and water and air inlet positions. Experimental data were obtained at the outlet of the test-section. The experiments were performed in two parts. Firstly, data were taken at increasing flow rates of air keeping water flow rates constant, and secondly, at simultaneous increase of air and water flow rates. At each flow condition, air supply position could be changed to 4 different positions. Data obtained by electrical void-needle technique were analyed and are presented here in graphical forms for comparison. The results of this study demonstrate qualitatively that air-distribution tends to be more uniform as water flow rates are increased. The air supply positions have noticeable effects on the pattern of air-distribution.

  • PDF

A Feasibility Analysis of Rapid Acquisition Test for Cement Fineness using Hydrometer (시멘트 인수검사 시 액체밀도계법에 의한 분말도 품질 신속평가 가능성 분석)

  • Han, Cheon-Goo;Kim, Young-Tae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.29-34
    • /
    • 2018
  • In this research, regarding the cement supplied to ready mixed concrete plant, the feasibility of rapid acquisition test for cement fineness using hydrometer which used for early strength evaluation of concrete was analyzed. Additionally, regarding the rapid test with hydrometer control factors were provided. As a result of analysis, quality control using hydrometer was possible with the regressive equation obtained in five minute between density of suspension and fineness of cement powder. As the control factors, dispersing admixture, replacing kerosene as a medium, and temperature of cement and water were evaluated. According to the control factor evaluation, the tap water was optimum as a medium and calibration of keeping the temperature of water to $20^{\circ}C$ or correction factor was needed for density results. Finally, it is considered that the suggested rapid quality evaluation method using hydrometer is cheaper and easier method than currently used Blaine test.