• Title/Summary/Keyword: water recovery

Search Result 1,837, Processing Time 0.03 seconds

Thermophysiological Responses and Subjective Sensations when Wearing Clothing with Quickly Water-Absorbent and Dry Properties Under Exercise-Induced Heat Strain (운동에 의한 열 스트레스하에서 흡한속건성 소재 운동복 착용시의 온열생리적 반응 및 주관적 감각)

  • Lee, So-Jin;Park, Shin-Jung
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.349-356
    • /
    • 2006
  • The purpose of this study was to compare the thermophysiological responses and subjective sensations of clothing materials with different water transfer property investigated in exercising and resting subjects at an ambient temperature of $20^{\circ}C$ and a relative humidity of 40%. Two kinds of clothing ensemble were tested: 100% cotton with highly water-absorbent but slowly dry properties(C) and 100% polyester with quickly water-absorbent and dry properties by four capillary channels(QADP). Seven apparently healthy male participants each undertook two series of experiments comprised 10-min of rest, 20-min of exercise with 70% of $VO_{2max}$ on a treadmill and 20-min of recovery. Mean skin temperature was significantly lower in QADP than in C during exercise and recovery. Clothing microclimate temperature was significantly lower in QADP during exercise and clothing surface temperature was also lower in QADP especially during recovery. Also, clothing surface humidity was significantly higher in QADP after the later half of exercise. The concentration of blood lactic acid tended to decrease to a lower level at recovery 3 minutes when wearing QADP rather than C clothing ensemble. Metabolic energy was marginally significantly less during the second half of exercise in QADP. Body mass loss tended to be greater in C than in QADP. The participants had better scores in thermal sensation, comfortable sensation and wetness in QADP during exercise and recovery. These results show that functional materials with quickly water-absorbent and dry properties can alleviate heat strain and induce more comfortable clothing microclimates and subjective sensations in the exercise-induced hyperthermia.

Post-disturbance Recovery Pattern in the Soft Corals-Macroalgae Mixed Habitat in Jeju Island, Korea

  • Kim, Junsu;Hong, Seokwoo;Yang, Kwon Mo;Macias, Daniela;Kim, Jeong Ha
    • Journal of Marine Life Science
    • /
    • v.6 no.2
    • /
    • pp.117-123
    • /
    • 2021
  • Post-disturbance recovery pattern of subtidal soft corals-macroalgae mixed community and the role of water depth were investigated. The experiment was conducted in a subtidal rock wall of Munseom, Jeju Island, Korea for 2.5 years. Artificial disturbance was done at established treatment plots at depths of 10, 15 and 20 m and were then compared with undisturbed control plots. After disturbance, recovery of soft corals was very slow, whereas macroalgae quickly occupied the plots and reached a similar level as the control in 6 months, and this pattern was consistent at all water depths. This unbalanced speed of recovery caused higher macroalgae establishment than soft corals in treatment compared to control plots, indicating a possible phase shift in the community structure. This study provides an important implication for the necessity of monitoring the influence of disturbance at a larger scale, from a conservation perspective of soft corals in Jeju coast.

Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse (온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities (생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토)

  • Park, Sang-Jin;Phae, Chae-gun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

The Degumming and Sericin Recovery of the Silk fabric Using the Electrolytic Water (전해수를 이용한 견섬유 정련 및 세리신 회수 (I))

  • 배기서;하헌주;박광수
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.249-258
    • /
    • 2002
  • Natural silk is formed by two proteins : the crystalline fibroin (inside the silk thread) and amorphous sericin (as a tube outside the thread). The degumming process is used to eliminate the external sericin prior to dyeing ; generally it makes use of soaps at about pH 10. Sericin is the protein constituent that "gums"together the fibroin filaments of cocoon silk. It constitutes about 25% of the weight of the cocoon, is soluble in hot water and "gels" on cooling. The removal of sericin from raw silk, known as degumming, is a simple but important process usually employing hot dilute soap or alkaline solution and occasionally dilute acids or enzymic methods. During degumming, alkali is taken up by the sericin and the free acid from the soap is formed ; this may be deposited on the fiber, reducing the rate of degumming and protecting it from hydrolysis. Alkali is often added to maintain or restore the pH of the baths, but it is rarely used alone, since it leaves the silk rather harsh in handle. If complete sericin removal is required as for printing, sodium carbonate may be added. If the pH of the bath exceeds 11, the fibroin is attacked. Recently, According to the development of electrolysis, we can be obtained the electrolytic reduction water(above pH 11.5) and electrolytic oxidation water (below pH 3). The aim of this work was to study a degumming process using electrolytic water and a possibility of sericin recovery. The new degumming process used electrolytic water operates at $95^\circ{C}$ for 2hr. without any reagents. The wastewater of this process are formed by a solution of sericin in water. This conditions suggest the study of a possible recovery of this protein (sericin) which has an amino acid composition suitable for many used in cosmetics, textile finishing agents, animal feeding, etc. The degumming process using electrolytic water is available to reduce treatment costs and pollute and at the same time to recover sericin.

골프장 농약 검사를 위한 다성분동시시험방법 확립에 관한 연구

  • 이민효;노회정;박종겸;윤정기;김찬섭
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.81-85
    • /
    • 2002
  • The possibility of simultaneous analysis of 24 pesticides out of 30 residual pesticides which are subjected to test in the golf courses was examined. The utility of the simultaneous analysis of multi-residue pesticides was evaluated by recovery test through a standard addition method of pesticides in water, soil, and lawn grass. The experimental results of the recovery rates for individual pesticides are as follows : The number of pesticide of which average recovery was over 70% regardless of medium was 16 pesticides. These pesticides were composed of 8 organophosphorus pesticides(Chlorpyrifos, Chlorpyrifos-methyl, Diazinon, EPN, Fenitrothion, Phenthoate, Phosalone, and Toclofos-methyl). 4 organochlorinated pesticides(Daconil, Captan, Endosulfan, and Tetradifon), 2 pyrethroid pesticides(Fepropathrin, Lambda-cyhalothrin) and 2 other pesticides(Bromopropylate, Pendimethalin). On the other hand, in case of Dicofol, average recovery by medium was over 70% for water and lawn grass but was only 53.3% for soil. Therefore, the simultaneous analytical method applied in this experiment is not appropriate for analysis of Dicofol in soil. Furthermore, among 7 pesticides, 2 pesticides(Amitraz and Pyraclofos) showed that theirs average recovery rates deviated from criteria(70~130%) at almost all media, while 5 pesticides(Bensulide, Deltamethrin, Iprodione, Phosphamidon and Tralomethlin) were not detected from all media by selected GC detector(NPD or ECD).

  • PDF

Trends of phosphorus recovery technology from sewage sludge ash by wet chemical method (습식 화학적 방법에 의한 하수 슬러지 소각재에서의 인 회수 기술동향)

  • Lee, Min-Su;Kim, Dong-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.131-143
    • /
    • 2018
  • Phosphorus (P) is a limited, essential, and irreplaceable nutrient for the biological activity of all the living organisms. Sewage sludge ash (SSA) is one of the most important secondary P resources due to its high P content. The SSA has been intensively investigated to recover P by wet chemicals (acid or alkali). Even though $H_2SO_4$ was mainly used to extract P because of its low cost and accessibility, the formation of $CaSO_4$ (gypsum) hinders its use. Heavy metals in the SSA also cause a significant problem in P recovery since fertilizer needs to meet government standards for human health. Therefore, P recovery process with selective heavy metal removal needs to be developed. In this paper some of the most advanced P recovery processes have been introduced and discussed their technical characteristics. The results showed that further research is needed to identify the chemical mechanisms of P transformation in the recovery process and to increase P recovery efficiency and the yields.

The Study on the Recovery Process of Zinc Metal from EAF Dust by Chemical Treatment (EAF 분전의 화학적처리에 와한 금속아연의 제조에 관한 연구)

  • Jeong, Rae-Youn;Lee, Jin-Hui
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.208-215
    • /
    • 2010
  • EAF dust which is contained around 30% of zinc, 15% of iron and 3% of lead individually, is chemically treated by ammonium chloride, ammonia water, ammonia gas and carbon dioxide, and also tested and identified the ratios of the recovery of In by applied the variations of particle size, pH and heating temperature as well, in order to getting optimized recovery of the In metal after performing all of those processes. Experimental results showed that the rate of Zn recovery is 97% when the mixture of 1.3 of $NH_4Cl$/EAF is heated to the temperature of $400^{\circ}C$ and leached by water, and 95% recovery of In when ammonia gas and carbon dioxide is added simultaneously and adjust the 9.5 of pH to the same mixture above. For the purpose of remove the impurities in the mixed sample, which is prepared by the two samples, indicated above showing as the ratio of 95% and 97% recovery, in case of applied the cementation process to it, and also by electrolytic process, produced the In plate of 95~97%, and acquired 99-99.5% of In metal ingot finally by applied the heating process at $470{\sim}500^{\circ}C$.

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle Using Dual-zone Reactor and CeO2/ZrO2 Foam Device (Dual-zone reactor와 CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.27-37
    • /
    • 2017
  • In this study, an artificial solar simulator composed of a 2.5 kW Xe-Arc lamp and mirror reflector was used to carry out the solar thermal two step thermochemical water decomposition cycle which can produce high efficiency continuous hydrogen production. Through various operating conditions, the change of hydrogen production due to the possibility of a dual-zone reactor and heat recovery were experimentally analyzed. Based on the reaction temperature of Thermal-Reduction step and Water-Decomposition step at $1,400^{\circ}C$ and $1,000^{\circ}C$ respectively, the hydrogen production decreased by 23.2% under the power off condition, and as a result of experiments using heat recovery technology, the hydrogen production increased by 33.8%. Therefore, when a thermochemical two-step water decomposition cycle is conducted using a dual-zone reactor with heat recovery, it is expected that the cycle can be operated twice over a certain period of time and the hydrogen production amount is increased by at least 53.5% compared to a single reactor.

Application of coagulation pretreatment for enhancing the performance of ceramic membrane filtration (세라믹 막여과의 성능향상을 위한 응집 전처리의 적용)

  • Kang, Joon-Seok;Song, Jiyoung;Park, Seogyeong;Jeong, Ahyoung;Lee, Jeong-Jun;Seo, Inseok;Chae, Seonha;Kim, Seongsu;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.501-510
    • /
    • 2017
  • In this study, it is estimated that ceramic membrane process which can operate stably in harsh conditions replacing existing organic membrane connected with coagulation, sedimentation etc.. Jar-test was conducted by using artificial raw water containing kaolin and humic acid. It was observed that coagulant (A-PAC, 10.6%) 4mg/l is the optimal dose. As a results of evaluation of membrane single filtration process (A), coagulation-membrane filtration process (B) and coagulation-sedimentation-membrane filtration process (C), TMP variation is stable regardless of in Flux $2m^3/m^2{\cdot}day$. But in Flux $5m^3/m^2{\cdot}day$, it show change of 1-89.3 kpa by process. TMP of process (B) and (C) is increased 11.8, 0.6 kpa each. But, the (A) showed the greatest change of TMP. When evaluate (A) and (C) in Flux $10m^3/m^2{\cdot}day$, TMP of (A) stopped operation being exceeded 120 kpa in 20 minutes. On the other hand, TMP of (C) is increased only 3 kpa in 120 minutes. Through this, membrane filtration process can be operated stably by using the linkage between the pretreatment process and the ceramic membrane filtration process. Turbidity of treated water remained under 0.1 NTU regardless of flux condition and DOC and $UV_{254}$ showed a removal rate of 65-85%, 95% more each at process connected with pretreatment. Physical cleaning was carried out using water and air of 500kpa to show the recovery of pollutants formed on membrane surface by filtration. In (A) process, TMP has increased rapidly and decreased the recovery by physical cleaning as the flux rises. This means that contamination on membrane surface is irreversible fouling difficult to recover by using physical cleaning. Process (B) and (C) are observed high recovery rate of 60% more in high flux and especially recovery rate of process (B) is the highest at 95.8%. This can be judged that the coagulation flocs in the raw water formed cake layer with irreversible fouling and are favorable to physical cleaning. As a result of estimation, observe that ceramic membrane filtration connected with pretreatment improves efficiency of filtration and recovery rate of physical cleaning. And ceramic membrane which is possible to operate in the higher flux than organic membrane can be reduce the area of water purification facilities and secure a stable quantity of water by connecting the ceramic membrane with pretreatment process.