DOI QR코드

DOI QR Code

Trends of phosphorus recovery technology from sewage sludge ash by wet chemical method

습식 화학적 방법에 의한 하수 슬러지 소각재에서의 인 회수 기술동향

  • Lee, Min-Su (Department of Environmental Science and Biotechnology & Institute of Energy and Environment, Hallym University) ;
  • Kim, Dong-Jin (Department of Environmental Science and Biotechnology & Institute of Energy and Environment, Hallym University)
  • 이민수 (한림대학교 환경생명공학과 및 에너지환경연구소) ;
  • 김동진 (한림대학교 환경생명공학과 및 에너지환경연구소)
  • Received : 2017.12.05
  • Accepted : 2018.03.20
  • Published : 2018.04.16

Abstract

Phosphorus (P) is a limited, essential, and irreplaceable nutrient for the biological activity of all the living organisms. Sewage sludge ash (SSA) is one of the most important secondary P resources due to its high P content. The SSA has been intensively investigated to recover P by wet chemicals (acid or alkali). Even though $H_2SO_4$ was mainly used to extract P because of its low cost and accessibility, the formation of $CaSO_4$ (gypsum) hinders its use. Heavy metals in the SSA also cause a significant problem in P recovery since fertilizer needs to meet government standards for human health. Therefore, P recovery process with selective heavy metal removal needs to be developed. In this paper some of the most advanced P recovery processes have been introduced and discussed their technical characteristics. The results showed that further research is needed to identify the chemical mechanisms of P transformation in the recovery process and to increase P recovery efficiency and the yields.

Keywords

References

  1. Ali, T.U., Kim, D.J. (2016). Phosphorus extraction and sludge dissolution by acid and alkali treatments of polyaluminum chloride (PAC) treated wastewater sludge, Bioresour. Technol., 217, 233-238. https://doi.org/10.1016/j.biortech.2016.02.017
  2. Biswas, B.K., Inoue, K., Harada, H., Ohto, K. and Kawakita, H. (2009). Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel, J. Environ. Sci., 21, 1753-1760. https://doi.org/10.1016/S1001-0742(08)62484-5
  3. Blocher, C., Niewersch, C. and Melin, T. (2012). Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration, Water Res., 46, 2009-2019. https://doi.org/10.1016/j.watres.2012.01.022
  4. Blume, H.P., Brummer, G.W., Fleige, H., Horn, R., Kandeler, E., Knabner, I.K., Kretzschmar, R., Stahr, K. and Wilke, B.M. (2016). Scheffer/Schachtschabel Soil Science, Springer.
  5. Cieslik, B., Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of "no solid waste generation" and analytical methods, J. Clean. Prod. 142, 1728-1740. https://doi.org/10.1016/j.jclepro.2016.11.116
  6. Comeau, Y., Hall, K.J., Hancock, R.E.W. and Oldham, W.K. (1986). Biochemical model for enhanced biological phosphorus removal, Water Res., 20, 1511-1521. https://doi.org/10.1016/0043-1354(86)90115-6
  7. Cooper, J., Lombardi, R., Boardman, D. and Marquet, C.C. (2011). The future distribution and production of global phosphate rock reserve, Resour. Consev. Recy., 57, 78-86. https://doi.org/10.1016/j.resconrec.2011.09.009
  8. Cordell, D., Drangert, J.O. and White, S. (2009). The story of phosphorus: Global food security and food for thought, Glob. Environ. Change, 19, 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
  9. Dittrich, C., Rath, W., Montag, D. and Pinnekamp, J. (2009). Phosphorus recovery from sewage sludge ash by a wet-chemical process, In: International Conference on Nutrient Recovery from Wastewater Streams, IWA Publishing, London, England.
  10. Donatello, S., Tong, D. and Cheeseman, C.R. (2010). Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA), Waste Manage., 30, 1634-1642. https://doi.org/10.1016/j.wasman.2010.04.009
  11. Driver, J., Lijmbach, D. and Steen, I. (1999). Why recover phosphorus for recycling, and how?, Environ. Technol., 20, 651-662. https://doi.org/10.1080/09593332008616861
  12. Dunnivant, F.M., Anders, E. (2006). A basic introduction to pollutant fate and transport: an integrated approach with chemistry, modeling, risk assessment, and environmental legislation, John Wiley & Sons Inc.
  13. Egle, L., Rechberger, H. and Zessner, M. (2015). Overview and description of technologies for recovering phosphorus from municipal wastewater, Resour. Cons. Recy. 105, 325-346. https://doi.org/10.1016/j.resconrec.2015.09.016
  14. Egle, L., Rechberger, H., Krampe, J. and Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies, Sci. Tot. Environ. 571, 522-542. https://doi.org/10.1016/j.scitotenv.2016.07.019
  15. Elzinga, E.J. and Sparks, D.L. (2007). Phosphate adsorption on to hematite: an in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation, J. Colloid Interf. Sci., 308, 53-70. https://doi.org/10.1016/j.jcis.2006.12.061
  16. European Commission. (2014). Report on critical raw materials for the EU, Raw Materials Supply Group, 1-41.
  17. Franz, M. (2008). Phosphate fertilizer from sewage sludge ash (SSA), Waste Manage., 28, 1809-1818. https://doi.org/10.1016/j.wasman.2007.08.011
  18. Gorazda, K., Kowalski, Z. and Wzorek, Z. (2012). From sewage sludge ash to calcium phosphate fertilizers, Pol. J. Chem. Technol., 14, 54-58.
  19. Guney, K. Weidelener, A. and Krampe, J. (2008). Phosphorus recovery from digested sewage sludge as MAP by help of metal ion separation, Water Res., 42, 4692-4698. https://doi.org/10.1016/j.watres.2008.08.016
  20. Gustafsson, J.P. (2012). Visual MINTEQ. Ver. 3.0. (http://vminteq.lwr.kth.se/).
  21. Herzel, H., Kruger, O., Hermann, L. and Adam, C. (2016). Sewage sludge ash - a promising secondary phosphorus source for fertilizer production, Sci. Total. Environ., 542, 1136-1143. https://doi.org/10.1016/j.scitotenv.2015.08.059
  22. Hukari, S., Hermann, L. and Nattorp, A. (2016). From wastewater to fertilisers - Technical overview and critical review of European legislation governing phosphorus recycling, Sci. Tot. Environ. 542, 1127-1135. https://doi.org/10.1016/j.scitotenv.2015.09.064
  23. Jeon, S., Kim, D.J. (2018). Enhanced phosphorus bioavailability and heavy metal removal from sewage sludge ash through thermochemical treatment with chlorine donors, J. Ind. Eng. Chem. 58, 216-221. https://doi.org/10.1016/j.jiec.2017.09.028
  24. Jewell, S., Kimball, S.M., (2016). Mineral commodity summaries 2016, U.S. Department of the interior, U.S. Geological survey, 124-125.
  25. Kim, M.W., Han, D.W. and Kim, D.J. (2015). Selective release of phosphorus and nitrogen from waste activated sludge with combined thermal and alkali treatment, Bioresour. Technol., 190, 522-528. https://doi.org/10.1016/j.biortech.2015.01.106
  26. Kruger, O., Adam, C. (2015). Recovery potential of German sewage sludge ash, Waste Manage., 45, 400-406. https://doi.org/10.1016/j.wasman.2015.01.025
  27. Lee, D.M., Song, Y.H., Baek, K.M. and Jeong, Y.K. (2014). Precipitation and separation properties of the phosphorus extracted from incinerated sewage sludge ash by sulfuric acid, J. Korean. Soc. Waste Manage., 31, 211-217. https://doi.org/10.9786/kswm.2014.31.2.211
  28. Lee, M., Kim, D.J. (2017). Identification of phosphorus forms in sewage sludge ash during acid pre-treatment for phosphorus recovery by chemical fractionation and spectroscopy, J. Ind. Eng. Chem., 51, 64-70. https://doi.org/10.1016/j.jiec.2017.02.013
  29. Levlin, E., Hultman, B. (2004). Phosphorus recovery from sewage sludge - ideas for further studies to improve leaching, Department of Land and Water Resources Engineering Report no. 12, 61-70.
  30. Levlin, E., Lowen, M., Stark, K. and Hultman, B. (2002). Effects of phosphorus recovery requirements on Swedish sludge management, Water Sci. Technol., 46 (4-5), 435-440. https://doi.org/10.2166/wst.2002.0644
  31. Lim, B.H., Kim, D.J. (2017). Selective acidic elution of Ca from sewage sludge ash for phosphorus recovery under pH control, J. Ind. Eng. Chem., 46, 62-67. https://doi.org/10.1016/j.jiec.2016.10.016
  32. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P. and Rittmann, B.E. (2016). Total value of phosphorus recovery, Environ. Sci. Technol., 50, 6606-6620. https://doi.org/10.1021/acs.est.6b01239
  33. Melia, P.M., Cundy, A.B., Sohi, S.P., Hooda, P.S. and Busquets, R. (2017). Trends in the recovery of phosphorus in bioavailable forms from wastewater, Chemosphere, 186, 381-395. https://doi.org/10.1016/j.chemosphere.2017.07.089
  34. Mew, M.C. (2016). Phosphate rock costs, prices and resources interaction, Sci. Total. Environ., 542, 1008-1012. https://doi.org/10.1016/j.scitotenv.2015.08.045
  35. National sewer information system. (2014). https://www.hasudoinfo.or.kr/stat/statView.do (January 2017)
  36. Niewersch, C., Koh, C.N., Wintgens, T., Melin, T., Schaum, C. and Cornel, P. (2008). Potentials of using nanofiltration to recover phosphorus from sewage sludge, Water Sci. Technol., 57(5), 707-714. https://doi.org/10.2166/wst.2008.119
  37. Oliver, B.G., Carey, J.H. (1976). Acid solubilization of sewage sludge and ash constituents for possible recovery, Water Res., 10, 1077-1081. https://doi.org/10.1016/0043-1354(76)90039-7
  38. Pastor, L., Marti, N., Bouzas, A. and Seco, A. (2008). Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants, Bioresour. Technol., 99, 4817-4824. https://doi.org/10.1016/j.biortech.2007.09.054
  39. Petzet, S., Peplinski, B. and Cornel, P. (2012). On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both, Water Res., 46, 3769-3780. https://doi.org/10.1016/j.watres.2012.03.068
  40. Ryther, J.H., Dunstan, W.M. (1971). Nitrogen, phosphorus, and eutrophication in the coastal marine environment, Science, 171, 1008-1013. https://doi.org/10.1126/science.171.3975.1008
  41. Schaum, C., Cornel, P. and Jardin, N., (2007). Phosphorus recovery from sewage sludge ash - a wet chemical approach. In: Proceeding of the IWA Conference on Biosolids, Moving Forward Wastewater Biosolids Sustainability: Technical, Managerial, and Public Synergy, 24-27.
  42. Schipper, W.J., Klapwijk, A., Potjer, B., Rulkens, W.H., Temmink, B.G., Kiestra, F.D.G. and Lijmbach, A.C.M. (2001). Phosphate recycling in the phosphorus industry, Environ. Technol., 22, 1337-1345. https://doi.org/10.1080/09593330.2001.9619173
  43. Sewerage Technology Development Project (SPIRIT21) Committee (2007). Zero sludge discharge technology, technology evaluation concerning phosphorus recovery from sewage sludge incinerator ash (from: http://nett21.gec.jp/rerss/reports/rp02.pdf).
  44. Stark, K., Plaza, E. and Hultman, B. (2006). Phosphorus release from ash, dried sludge and sludge residue from supercritical water oxidation by acid or base, Chemosphere, 62, 827-832. https://doi.org/10.1016/j.chemosphere.2005.04.069
  45. Takahashi, M., Kato, S., Shima, H., Sarai, E., Ichioka, T., Hatyakawa, S. and Miyajiri, H. (2001). Technology for recovering phosphorus from incinerated wastewater treatment sludge, Chemosphere, 44, 23-29. https://doi.org/10.1016/S0045-6535(00)00380-5
  46. Tan, Z., Lagerkvist, A. (2011). Phosphorus recovery from the biomass ash: A review, Renew. Sust. Energ. Rev., 15, 3588-3602. https://doi.org/10.1016/j.rser.2011.05.016
  47. Torres, L.M., Gil, A.F., Galicia, L. and Gonzalez, I. (1996). Understanding the difference between inner- and outer-sphere mechanisms, J. Chem. Educ., 73, 808-810. https://doi.org/10.1021/ed073p808
  48. Vuuren, D.P., Bouwman, A.F. and Beusen, A.H.W. (2010). Phosphorus demand for the 1970-2100 period: A scenario analysis of resource depletion, Global. Environ. Change, 20, 428-439. https://doi.org/10.1016/j.gloenvcha.2010.04.004