DOI QR코드

DOI QR Code

Comparison of 2,4,6-tribromophenol removal using in-situ liquid ferrate(VI) and stable ferrate(VI)

원위치 제조 액상 Ferrate(VI)와 안정화 Ferrate(VI)를 이용한 2,4,6-tribromophenol의 제거 비교연구

  • Laksono, Fajar Budi (Interdisiplinary Program of Marine Convergence Design, Pukyong National University) ;
  • Jung, Sun-Young (Department of Environmental Engineering, Pukyong National University) ;
  • Kim, Il-Kyu (Department of Environmental Engineering, Pukyong National University)
  • Received : 2018.01.04
  • Accepted : 2018.03.19
  • Published : 2018.04.16

Abstract

This paper provided the information related to the removal of 2,4,6-tribromophenol using in-situ and stable liquid ferrates(VI). This research's goal was to observe the differences of oxidation power between in-situ liquid ferrate(VI) and stable liquid ferrate(VI). The in-situ liquid ferrate(VI) ($FeO_4{^{2-}}$) has been successfully produced with the concentration 42,000 ppm (Fe) after 11 minutes of reaction time. The stable liquid ferrate(VI) was also successfully produced following the modification method by Sharma with the produced concentrations 7,000 ppm. The stable liquid ferrate(VI) was stable for 44 days and slightly decreased afterwards. This research has been carried out using 2,4,6-tribromophenol as the representative compound. Both of ferrates(VI) have the highest oxidation capability at the neutral condition. Furthermore, the stable liquid ferrate(VI) has higher oxidation power than the in-situ liquid ferrate(VI).

Keywords

References

  1. Ashworth, R.B., and Cormier, M.J. (1967). Isolation of 2,6-dibromophenol from the marine hemichordate, Balanoglossus biminiensis, Sci. Rep., (New York, N.Y.), 155(3769), 1558-1559.
  2. Dell'Erba, A., Falsanisi, D., Liberti, L., Notarnicola, M. and Santoro, D. (2007). Disinfection by-products formation during wastewater disinfection with peracetic acid, Desalination, 215(1-3), 177-186. https://doi.org/10.1016/j.desal.2006.08.021
  3. Evans, C.S., and Dellinger, B. (2005). Mechanisms of dioxin formation from the high-temperature oxidation of 2-bromophenol, Environ. Sci. Technol., 39(7), 2128-2134. https://doi.org/10.1021/es048461y
  4. Fielman, K.T., Woodin, S.A., Walla, M.D., and Lincoln, D.E. (1999). Widespread occurrence of natural halogenated organics among temperate marine infauna, Mar. Ecol. Prog. Ser., 181, 1-12. https://doi.org/10.3354/meps181001
  5. Gao, B., Liu, J., Liu, F., and Yang, F. (2013). Photocatalytic degradation of 2,4,6-tribromophenol over Fe-doped Znln2S4: stable activity and enhanced debromination, Appl. Catal. B - Environ., 129, 89-97. https://doi.org/10.1016/j.apcatb.2012.09.007
  6. Graham, N., Jiang, C.C., Li, X.Z., Jiang, J.Q., and Ma, J. (2004). The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate, Chemosphere, 56(10), 949-956. https://doi.org/10.1016/j.chemosphere.2004.04.060
  7. Gutierrez, M., Becerra, J., Godoy, J., and Barra, R. (2005). Occupational and environmental exposure to tribromophenol used for wood surface protection in sawmills, Int. J. Environ. Health Res., Taylor & Francis, 15(3), 171-179. https://doi.org/10.1080/09603120500105828
  8. Huang, H., Sommerfeld, D., Dunn, B.C., Eyring, E.M., and Lloyd, C.R. (2001). Ferrate (VI) oxidation of aqueous phenol: kinetics and mechanism, J. Phys. Chem. A, 105(14), 3536-3541. https://doi.org/10.1021/jp0039621
  9. Jeong, H.Y., Kim, H., and Hayes, K.F. (2007). Reductive dechlorination pathways of tetrachloroethylene and trichloroethylene and subsequent transformation of their dechlorination products by mackinawite (FeS) in the presence of metals, Environ. Sci. Technol., 41(22), 7736-7743. https://doi.org/10.1021/es0708518
  10. Jiang, J., and Lloyd, B. (2002). Progress in the development and use of ferrate (VI) salt as an oxidant and coagulant for water and wastewater treatment, Water Res., 36, 1397-1408. https://doi.org/10.1016/S0043-1354(01)00358-X
  11. Jiang, J.Q. (2007). Research progress in the use of ferrate(VI) for the environmental remediation, J. Hazard. Mater., 146(3), 617-623. https://doi.org/10.1016/j.jhazmat.2007.04.075
  12. Jiang, J.Q. (2014). Advances in the development and application of ferrate(VI) for water and wastewater treatment, J. Chem. Technol. Biotechnol., 89(2), 165-177. https://doi.org/10.1002/jctb.4214
  13. King, G.M. (1986). Inhibition of microbial activity in marine sediments by a bromophenol from a hemichordate, Nature, 323(6085), 257-259. https://doi.org/10.1038/323257a0
  14. King, G.M. (1988). Dehalogenation in marine sediments containing natural sources of halophenols, Appl. Environ. Microbiol., 54(12), 3079-3085.
  15. Laksono, F. and Kim, I.K. (2017). Study on 4-bromophenol degradation using wet oxidation in-situ liquid ferrate(VI) in the aqueous phase, Desalination, Water Treat., 58, 391-398. https://doi.org/10.5004/dwt.2017.11428
  16. Lee, Y., Cho, M., Kim, J.Y., and Yoon, J. (2004). Chemistry of ferrate (Fe (VI)) in aqueous solution and its applications as a green chemical, J. Ind. Eng. Chem., 10(1), 161-171.
  17. Li, C., Li, X. Z., and Graham, N. (2005). A study of the preparation and reactivity of potassium ferrate, Chemosphere, 61(4), 537-543. https://doi.org/10.1016/j.chemosphere.2005.02.027
  18. Li, Z., Yoshida, N., Wang, A., Nan, J., Liang, B., Zhang, C., Zhang, D., Suzuki, D., Zhou, X., Xiao, Z., and Katayama, A. (2015). Anaerobic mineralization of 2,4,6-tribromophenol to $CO_2$ by a synthetic microbial community comprising clostridium, dehalobacter, and desulfatiglans, Bioresour. Technol., 176, 225-232. https://doi.org/10.1016/j.biortech.2014.10.097
  19. Macova, Z., Bouzek, K., Hives, J., Sharma, V.K., Terryn, R.J., and Baum, J.C. (2009). Research progress in the electrochemical synthesis of ferrate(VI), Electrochim. Acta, 54(10), 2673-2683. https://doi.org/10.1016/j.electacta.2008.11.034
  20. Meerts, I. a, van Zanden, J. J., Luijks, E. a, van Leeuwen-Bol, I., Marsh, G., Jakobsson, E., Bergman, a, and Brouwer, a. (2000). Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro, Toxicol. Sci., 56, 95-104. https://doi.org/10.1093/toxsci/56.1.95
  21. Pedersen, M., Saenger, P., and Fries, L. (1974). Simple brominated phenols in red algae, Phytochem. 13(10), 2273-2279.
  22. Rios, J.C., Repetto, G., Jos, a., del Peso, a., Salguero, M., Camean, a., Repetto, M., Rios, J. C., and Camean, A. (2003). Tribromophenol induces the differentiation of SH-SY5Y human neuroblastoma cells in vitro, Toxicol. Vitro, 17(5-6), 635-641. https://doi.org/10.1016/S0887-2333(03)00110-3
  23. Arnold, W.A., and Roberts, A.L. (2000). Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe (0) particles, Environ. Sci. Technol., 34(9), 1794-1805. https://doi.org/10.1021/es990884q
  24. Rush, J.D., Zhao, Z., and Bielski, B.H.J. (1996). Reaction of Ferrate (VI)/Ferrate (V) with Hydrogen Peroxide and Superoxide Anion - a Stopped-Flow and Premix Pulse Radiolysis Study, Free. Radic. Res., 24(3), 187-198. https://doi.org/10.3109/10715769609088016
  25. Sharma, V.K., and Bielski, B.H.J. (1991). Reactivity of ferrate(VI) and ferrate(V) with amino acids, Inorg. Chem., 30(23), 4306-4310. https://doi.org/10.1021/ic00023a005
  26. Sharma, V.K., Rendon, R.a., Millero, F.J., and Vazquez, F. G. (2000). Oxidation of thioacetamide by ferrate(VI), Mar. Chem., 70(1-3), 235-242. https://doi.org/10.1016/S0304-4203(00)00029-3
  27. Sharma, V.K. (2002). Potassium ferrate(VI): An environmentally friendly oxidant, Adv. Environ. Res., 6, 143-156. https://doi.org/10.1016/S1093-0191(01)00119-8
  28. Sharma, V.K., Burnett, C.R., and Millero, F.J. (2001). Dissociation constants of the monoprotic ferrate(VI) ion in NaCl media, Phys. Chem. Chem. Phys., 3(11), 2059-2062. https://doi.org/10.1039/b101432n
  29. Sharma, V. K. (2010). Oxidation of inorganic compounds by ferrate(VI) and ferrate(V): One-electron and two-electron transfer steps, Environ. Sci. Technol., 44, 5148-5152 https://doi.org/10.1021/es1005187
  30. Sharma, V.K. (2011). Oxidation of inorganic contaminants by ferrates (VI, V, and IV)-kinetics and mechanisms: A review. J. Environ. Manage., Elsevier Ltd, 92(4), 1051-1073. https://doi.org/10.1016/j.jenvman.2010.11.026
  31. Sharma, V.K. (2013). Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism, Coord. Chem. Rev., Elsevier B.V., 257(2), 495-510. https://doi.org/10.1016/j.ccr.2012.04.014
  32. Sharma, V.K. (2015). Apparatus and method for producing liquid ferrate, Google Patents.
  33. Svanks, K. (1976). Oxidation of Ammonia in Water by Ferrates (VI) and (IV), Ohio State University, Water Resources Center.
  34. Wagner, W.F., Gump, J.R., and Hart, E.N. (1952). Factors Affecting Stability of Aqueous Potassium Ferrate(VI) Solutions, Anal. Chem., American Chemical Society, 24(9), 1497-1498. https://doi.org/10.1021/ac60069a037
  35. Yang, B., Ying, G.G., Zhang, L.J., Zhou, L.J., Liu, S., and Fang, Y.X. (2011). Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles, Water Res., 45(6), 2261-2269. https://doi.org/10.1016/j.watres.2011.01.022
  36. Yang, B., Ying, G.G., Chen, Z.F., Zhao, J.L., Peng, F.Q., and Chen, X.W. (2014). Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A, Water Res., Elsevier Ltd, 62(Vi), 211-219. https://doi.org/10.1016/j.watres.2014.05.056
  37. Yu, M., Park, G., and Kim, H.O. (2008). (n.d.). Oxidation of Nonylphenol Using Ferrate, ACS symposium series, Oxford University Press, 985, 389-403.