• Title/Summary/Keyword: water pressure test

Search Result 1,280, Processing Time 0.034 seconds

Pressure analysis in grouting and water pressure test to achieving optimal pressure

  • Amnieh, Hassan Bakhshandeh;Masoudi, Majid;Kolahchi, Reza
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.685-699
    • /
    • 2017
  • In order to determine the rate of penetrability, water pressure test is used before the grouting. One of the parameters which have the highest effect is pressure. Mathematical modeling is used for the first time in this study to determine the optimum pressure. Thus, the joints that exist in the rock mass are simulated using cylindrical shell model. The joint surroundings are also modeled through Pasternak environment. In order to validate the modeling, pressure values obtained by the model were used in the sites of Seymareh and Aghbolagh dams and the relative error rates were measured considering the differences between calculated and actual pressures recorded in these operations. In water pressure test, in Seymareh dam, the error values were equal to 4.75, 3.93, 4.8 percent and in the Aghbolagh dam, were 22.43, 5.22, 2.6 percent and in grouting operation in Seymareh dam were equal to 9.09, 32.50, 21.98, 5.57, 29.61 percent and in the Aghbolagh dam were 2.96, 5.40, 4.32 percent. Due to differences in rheological properties of water and grout and based on the overall results, modeling in water pressure test is more accurate than grouting and this error in water pressure test is 7.28 percent and in grouting is 13.92 percent.

Estimating of water pressure to avoid hydraulic fracturing in water pressure test

  • Amnieh, Hassan Bakhshandeh;Masoudi, Majid
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.171-177
    • /
    • 2017
  • Water pressure test operation is used before the grouting to determine the rate of penetrability, the necessity and estimations related to grouting, by the penetration of water into the borehole. One of the parameters which have the highest effect is pressure of water penetration since the application of excessive pressure causes the hydraulic fracture to occur in the rock mass, and on the other hand, it must not be so small that prevents from seeing mechanical weaknesses and the rate of permeability. Mathematical modeling is used for the first time in this study to determine the optimum pressure. Thus, the joints that exist in the rock mass are simulated using cylindrical shell model. The joint surroundings are also modeled through Pasternak environment. To obtain equations governing the joints and the surroundings, energy method is used accompanied by Hamilton principle and an analytical solution method is used to obtain the maximum pressure. In order to validate the modeling, the pressure values obtained by the model were used in the sites of Seymareh and Aghbolagh dams and the relative error rates were measured considering the differences between calculated and actual pressures. Modeling in the sections of Seymareh dam showed 4.75, 3.93, 4.8 percent error rates and in the sections of Aghbolagh dam it rendered the values of 22.43, 5.22, 2.6 percent. The results indicate that this modeling can be used to estimate the amount of pressure for hydraulic fracture in water pressure test, to predict it and to prevent it.

A Study on Prediction of the Liquefaction Behavior of Saturated Sandy Soils Using DSC Constitutive Equation (DSC구성방정식을 이용한 포화사질토의 액상화 거동 예측)

  • 박인준;김수일;정철민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.201-208
    • /
    • 2000
  • In this study, the behavior of saturated sandy soils under dynamic loads - pore water pressure and effective stress - was investigated using Disturbed State Concept(DSC) model. The model parameters are evaluated from laboratory test data. During the process of loading and reverse loading, DSC model is utilized to trace strain-hardening and cyclic softening behavior. The procedure of back prediction proposed in this study are verified by comparing with laboratory test results. From the back prediction of pore water pressure and effective mean pressure under cyclic loading, excess pore water pressure increases up to initial effective confining pressure and effective mean pressure decrease close to zero in good greement with laboratory test results. Those results represent the liquefaction of saturated sandy soils under dynamic loads. The number of cycles at initial liquefaction using the model prediction is in good agreement with laboratory test results. Therefore, the results of this study state that the liquefaction of saturated sandy soils can be explained by the effective tress analysis.

  • PDF

Development of Automation System of Water-Hydraulic and Leakage Test for Pressure Vessel (압력용기 수압 및 기밀시험 자동화 시스템 개발)

  • 이원희;김동수;이승현;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1672-1675
    • /
    • 2003
  • In this study, we developed full automation test system for pressure vessel. This pressure vessel containing oxygen, nitrogen and carbon is widely used in industrial field. The test items of pressure vessel are divided into three branches which is weight measurement, water-hydraulic, and leakage test. After leakage test is completed, cleaning and dry progress is carried out. And control system is consist of three controller which is PLC, monitoring system and database system. PLC is control all of system. Monitoring system measures weight, pressure, flow etc and display to all conditions. Database system stores tested data. we design system to control all test modules in communication by a second period with three control modules. Finally, we verified this system by field test.

  • PDF

Development of an automated system for water-hydraulic and leakage test of pressure vessels

  • Kim, Dong-Soo;Lee, Won-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • This study developed a fully automated test system for pressure vessels, containing such as oxygen, nitrogen, which is widely used in many industries. The pressure vessel test has three major parts including weight measurement test, water-hydraulic test and leakage test followed by cleaning and drying. The control system for these tests consists of three parts: a PLC, a monitoring system and a database management system. The PLC oversees overall control of test machines, while the monitoring system measures and displays weight, pressure, flow etc. for every situations, and the database management system stores test data. These three modules are designed to communicate with one another at 1 Hz frequency alerting problematic situations to the operator. The system has gone through actual field tests for verification of performances.

Sensitivity Analysis of Initial Pressure and Upper Control Limit on the Pressure Decay Test for Membrane Integrity Evaluation (압력손실시험을 이용한 막 완결성 평가에서 초기압력 및 UCL 도출인자 민감도 분석)

  • Lee, Joohee;Hong, Seungkwan;Hur, Hyunchul;Lee, Kwangjae;Choi, Youngjune
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.793-800
    • /
    • 2008
  • Recently domestic drinking water industry has recognized membrane-based technology as a promising alternative for water treatment. To ensure successful application of membrane processes, the integrity of membrane systems should be maintained. According to US EPA guidance, the pressure decay test based on the bubble point theory is recommended to detect any membrane defection of which size is close to the smallest diameter of Cryptosporidium oocysts, $3{\mu}m$. Proper implementation of the pressure decay test is greatly affected by initial test pressure, and the interpretation of the test results is associated with upper control limit. This study is conducted to investigate various factors affecting determination of initial test prtessure and upper control limit, including membrane-based parameters such as pore shape correction factor, surface tension and contact angle, and system-based parameters, such as volumetric concentration factor and total volume of system. In this paper, three different hollow fibers were used to perform the pressure decay test. With identical initial test pressure applied, their pressure decay tendency were different from each other. This finding can be explained by the micro-structure disparity of those membranes which is verified by FESEM images of those membranes. More specifically, FESEM images revealed that three hollow fibers have asymmetry, deep finger, shallow finger pore shape, respectively. In addition, sensitivity analysis was conducted on five parameters mentioned above to elucidate their relation to determination of initial test pressure and upper control limit. In case of initial pressure calculation, the pore shape correction factor has the highest value of sensitivity. For upper control limit determination, system factors have greater impact compared to membrane-based parameters.

A Comparison of Standard Methods for Evaluating the Water Resistance of Shell Fabrics

  • Kwon, Myoung-Sook;Nam, Youn-Ja
    • The International Journal of Costume Culture
    • /
    • v.4 no.3
    • /
    • pp.241-248
    • /
    • 2001
  • Re water resistance of shell fabrics intended for we in outdoor apparel was measured using three different standard test methods, ASTM D 751, hydrostatic resistance, procedure A(Mullen test -- with and without a fabric support) and Procedure B (Hydrostatic head test). A database of information on their water resistance performance was created. The data collected with different methods were correlated and the advantages and disadvantages of each method were compared. The Mullen test with a support appears to give higher and more favorable water resistance values on shell fabrics preventing fabric rupture during the test. The hydrostatic head test gave lower hydrostatic pressure values than those measured on the two Mullen tests. The Mullen test is recommended for testing the water resistance of fabrics that high a relatively high water resistance because the Mullen tester applies a wide range of pressure. The hydrostatic head test is recommended for testing the fabrics that have relatively low water resistance. The area of the fabric sample that is in contact with the water is smaller in the Mullen test, so higher pressure levels can be reached and more samples should probably be tested to get a representative value for each fabric types. Furthermore, the hydrostatic head test was deemed more repeatable than the Mullen tests in his study.

  • PDF

Effect of Water Drinking on the Changes in Blood Pressure after Spinal Surgery in the Elderly (척추수술 후 수분섭취중재가 노인의 혈압변화에 미치는 효과)

  • Kim, Hyung Ja;Kim, Miyoung
    • Journal of Korean Clinical Nursing Research
    • /
    • v.20 no.1
    • /
    • pp.113-122
    • /
    • 2014
  • Purpose: The purpose of this study was to examine the effects of drinking water on the change in blood pressure after spinal surgery. Methods: A quasi-experimental nonequivalent control group, pretest and posttest design was employed. Subjects were consisted of 40 elderly patients who underwent spine surgery (20 in the experimental group, 20 in the control group). Data were collected from May 9th to September 30th, 2013. The experimental design involved patients drinking 400 mL of water in 5 mins after surgery and the blood pressure was measured in a standing position following the first 30 minutes after surgery. Control group received the same treatment and care as experimental group, except for the water intake. Data were analyzed using SPSS WIN 19.0 for $x^2-test$, t-test and independent t-test. Results: Experimental group with water intake demonstrated a significant higher level of systolic blood pressure compared to the control group (t=9.065, p=.005), but showed a non-significant level of diastolic blood pressure. Conclusion: This study indicates that water intake can be utilized as a useful nursing intervention to monitor changes in systolic blood pressure in elderly patients after spinal surgery.

Development of a prediction model relating the two-phase pressure drop in a moisture separator using an air/water test facility

  • Kim, Kihwan;Lee, Jae bong;Kim, Woo-Shik;Choi, Hae-seob;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3892-3901
    • /
    • 2021
  • The pressure drop of a moisture separator in a steam generator is the important design parameter to ensure the successful performance of a nuclear power plant. The moisture separators have a wide range of operating conditions based on the arrangement of them. The prediction of the pressure drop in a moisture separator is challenging due to the complexity of the multi-dimensional two-phase vortex flow. In this study, the moisture separator test facility using the air/water two-phase flow was used to predict the pressure drop of a moisture separator in a Korean OPR-1000 reactor. The prototypical steam/water two-phase flow conditions in a steam generator were simulated as air/water two-phase flow conditions by preserving the centrifugal force and vapor quality. A series of experiments were carried out to investigate the effect of hydraulic characteristics such as the quality and liquid mass flux on the two-phase pressure drop. A new prediction model based on the scaling law was suggested and validated experimentally using the full and half scale of separators. The suggested prediction model showed good agreement with the steam/water experimental results, and it can be extended to predict the steam/water two-phase pressure drop for moisture separators.

Numerical Studies on the Deceleration Characteristics of Supersonic Projectile According to the Test Condition Parameters in a Soft Recovery System (저감속 회수장비 시험조건에 따른 초음속 시험탄 감속특성에 대한 수치해석적 연구)

  • Song, Minsup;Kim, Jaehoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.485-493
    • /
    • 2020
  • Numerical analyses were performed using a one-dimensional Euler equation and Godunov Harten-Lax-Van Leer(HLL) Riemann solver in order to study the deceleration characteristics of a 155 mm projectile in a soft recovery system. The soft recovery system consisting of a series of pressure tubes is a system that decelerates the test projectile fired at supersonic speed using a high-pressure gas and filled water inside. Therefore, depending on the gas pressure and the amount of water filling, the deceleration and the exit velocity of the test projectile inside the pressure tube are determined. In this paper, the deceleration characteristics of the test projectile were analyzed according to the gas pressure and water mass filled.