• Title/Summary/Keyword: water of crystallization

Search Result 198, Processing Time 0.032 seconds

An Experimental Study on the Underground Structure Apply Properties to Salt Water Environment of Pre-hydrated Bentonite Waterproofing. (사전수화 벤토나이트 방수재의 염수환경 지하구조물 적용 특성에 관한 실험적 연구)

  • Lee, Jung-Hoon;Choi, Sung-Min;Choi, Sung-Min;Oh, Sang Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.833-836
    • /
    • 2008
  • In this study, we would like to study on the apply properties to salt water environment of pre-hydrated bentonite for complement problem that water leakage to permit salt water that existing bentonite does not initial swelling. Accordingly, execute viscosity properties, swelling properties, permeability and confirmed apply properties to salt water environment. Did not permit initial permeable in test result salt water environment, and permeable did not happen until 72 hours by maximum $3kgf/cm^2$ water pressure. Fresh water environment enough progress of gelation confirm that viscosity and swelling properties confirmation result and as delamination phenomenon of platy formation looked in salt water environment but this as bentonite hydrates crystallization layer swelling that is done consider. Synthetic study results, if compaction condition such as press layer is formed to bentonite upper, applied to the salt water environment of the underground structures of expectations.

  • PDF

Experimental study on freezing point of saline soft clay after freeze-thaw cycling

  • Wang, Songhe;Wang, Qinze;Qi, Jilin;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.997-1004
    • /
    • 2018
  • The brine leakage is a tough problem in artificial freezing engineering. This paper takes the common soft clay in Wujiang District as the study object, and calcium chloride solutions with six salinity levels were considered. The 'classic' cooling curve method was employed to measure the freezing point of specimens after freeze-thaw. Results indicate that four characteristic stages can be observed including supercooling, abrupt transition, equilibrium and continual freezing, strongly dependent on the variation of unfrozen water content. Two characteristic points were found from the cooling curves, i.e., freezing point and initial crystallization temperature. A critical value for the former exists at which the increment lowers. The higher the saline content approximately linearly, lower the freezing point. In the initial five cycles, the freezing point increases and then stabilizes. Besides, the degree of supercooling was calculated and its correlations with water, salt and freeze-thaw cycles were noted. Finally, an empirical equation was proposed for the relationship of freezing point and three main factors, i.e., water content, saline content and freeze-thaw cycles. Comparison of calculated and measured data proves that it is reliable and may provide guidance for the design and numerical analysis in frozen soil engineering.

Recent Water Treatment Technology for Unconventional Natural Resource Development (비전통자원개발에 따른 수처리 최신 기술)

  • Kim, Geug Tae;Chung, Kun Yong;Park, Jung Kyu
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.154-165
    • /
    • 2014
  • Development of unconventional natural resources such as shale gas, shale oil and coal bed methane, has been activated and improved the productivity due to the recent technology advance in horizontal drilling and hydraulic fracturing. However, the flowback water mixed with chemical additives, and the brine water containing oil, gas, high levels of salts and radioactive metals is produced during the gas production. Potential negative environmental impact due to large volumes of the produced wastewater is increasingly seen as the major obstacles to the unconventional natural resource development. In this study an integrated framework for the flowback and brine water treatment is proposed, and we reviewed the upcoming state of the art technology in water treatment. Basic separation processes which include not only membrane, evaporation, crystallization and desalination processes, but the potential water reuse and recycling techniques can be applied for the unconventional natural resource industry.

Removal Characteristics of Phosphorus at Synthetic Variation of Zirconium Mesoporous Structure (지르코늄 메조기공 구조체의 합성조건 변화에 따른 인 제거 특성)

  • Lee, Sang-hyup;Lee, Byoung-cheun;Lee, Kwan-yong;Choi, Yong-su;Park, Ki-young
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.637-642
    • /
    • 2005
  • The focus of this study was to examine the phosphorus removal characteristic by zirconium mesoporous structured material synthesized on various conditions. The zirconium sulfate-surfactant mesoporous structured material(ZS) was synthesized by hydro-thermal synthesis. The material has regular hexagonal array of surfactant micelles and sulfate ion ($HSO_4{^-}$). We confirmed that sulfate ion in zirconium mesoporous structured material can be ion-exchanged with phosphate ion ($H_2PO_4{^-}$) in phosphoric acid solution. On the X-ray diffraction (XRD) pattern of ZS, three peaks which shows the important characteristics of hexagonal crystal lattice were observed at (100), (110) and (200). The transmission electron micrograph (TEM) show high crystallization with pore size about $47{\AA}$. The maximum adsorption capacity of ZS was as great as 3.2 mmol-P/g-ZS. From the adsorption isotherm, correlation coefficients were higher for the Langmuir isotherm than the Freundlich isotherm. With the respect of chain length of surfactant, the adsorption capacity for phosphate synthesized with C12 was higher than C16 and C18. The highest amount of adsorbed phosphate on ZS was observed at the surfactant-to-zirconium molar ratio of 0.5 to 1.

Solid Dispersions as a Drug Delivery System

  • Kim, Ki-Taek;Lee, Jae-Young;Lee, Mee-Yeon;Song, Chung-Kil;Choi, Joon-Ho;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.125-142
    • /
    • 2011
  • Solid dispersion, defined as the dispersion of one or more active ingredient in a carrier or matrix at solid state, is an efficient strategy for improving dissolution of poorly water-soluble drugs for enhancement of their bioavailability. Compared to other conventional formulations such as tablets or capsules, solid dispersion which can be prepared by various methods has many advantages. However, despite numerous studies which have been carried out, limitations for commercializing these products remain to be solved. For example, during the manufacturing process or storage, amorphous form of solid dispersion can be converted into crystalline form. That is, the dissolution rate of solid dispersion would continuously decrease during storage, resulting in a product of no value. To resolve these problems, studies have been conducted on the effects of excipients. In fact, modification of the solid dispersions to overcome these disadvantages has progressed from the first generation to the recent third generation products. In this review, an overview on solid dispersions in general will be given with emphasis on the various manufacturing processes which include the use of polymers and on the stabilization strategies which include methods to prevent crystallization.

Influence of Compost Recycling and Magnesium Supplement on Physical and Chemical Traits of Animal Manure Compost

  • Lee, Jin-Eui;Kwag, Jung-Hoon;Ra, Chang-Six
    • Journal of Animal Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.513-519
    • /
    • 2010
  • A series of experiments were performed to study the influence of the following parameters on the physical traits and composition of swine manure compost: (1) addition of magnesium (Mg) at a molar ratio of 1.2 with respect to $PO_4$, and (2) reutilization of compost containing $MgNH_4PO_4{\cdot}6H_2O$ (magnesium ammonium phosphate, MAP). Three independent batch tests were conducted for replication: batch test I-control (C) and Mg added (T), batch test II-C, T and compost recycle ($T_{R1}$), and batch test III-C, T and compost recycle ($T_{R2}$). Magnesium addition and compost reutilization had no adverse effect on the degradation of organic matter. Reuse of the compost, however, had a clear effect on the total nitrogen (TN) and total phosphorus (TP) contents in the final compost. Repeated compost reutilization as a bulking material was resulted in composts rich in N and P. Upon adding the Mg supplement to the composting materials, the ortho-phosphate (OP) to TP ratio decreased due to the MAP crystallization reaction. The decrease in the OP/TP ratio and the increase in the TP content of the compost indicate that water-soluble phosphate is converted into a slow-release phosphate by the formation of crystals during composting. X-ray diffraction analysis of the irregular shaped crystals in the compost indicated that they are MAP crystals and that the crystallization of MAP begins immediately after the addition of the Mg supplement. The Mg addition to composting materials and the reutilization of compost as a bulking material would be a practical means to conserve nutrient content.

Synthesis of Gallosilicate(Ga-MFI} and Its Comparison with ZSM-5 (갈리실리케이트(Ga-MFI)의 합성 및 ZSM-5와의 비교)

  • Kim, Young-Kook;Hwang, Jae-Young;Kim, Myung-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2004
  • Ga-MFI was synthesized by a hydrothermal process at atmospheric pressure. The effect of mole ratios of reactants on crystallization was also investigated thoroughly. The characteristics of synthesized Ga-MFI was compared with ZSM-5. The synthesis of Ga-MFI was carried out with five different mole-compositions of $\underline{a}SiO_2-\underline{b}Ga_2O_3-\underline{c}Na_2O-\underline{d}TPA_2o-\underline{e}H_2O$. The synthesized Ga-MFI and ZSM-5 were characterized by XRD and FT-IR. The inorganic cation ($Na^+$) and water played an important role in crystallinity and the organic cation ($TPA^+$) as a template played a great influence on yields. With the increase in the amount of $Ga^{3+}$, crystallization time was increased. With a fixed $SiO_2/Ga_2O_3$ ratio of 400, the optimum reaction condition was obtained at $H_2O/SiO_2$=30${\sim}$35, $Na_2O/SiO_2$=0.5${\sim}$0.6, and $TPA_2O/Na_2O$=1${\sim}$1.25. In these cases, the crystallinity and yield were more than 95% and 90%, respectively. By comparing IR spectrum of Ga-MFI with those of ZSM-5 and silicalite, it was found that Ga-MFI showed a unique peak at 970 $cm^{-1}$, which may be used to identify Ga-MFI from ZSM-5 and silicalite.

Crystallization Kinetics of NTO in a Batch Cooling Crystallizer (회분식 냉각 결정화기에서 NTO의 결정화 메카니즘)

  • Kim, K.J.;Kim, M.J.;Yeom, C.K.;Lee, J.M.;Choi, H.S.;Kim, H.S.;Park, B.S.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.974-978
    • /
    • 1998
  • The kinetics of crystal growth and nucleation in dependence on the supersaturation of an aqueous solution of 3-nitro-1,2,4-triazol-5-one(NTO) were evaluated on the draft tube-baffle(DTB) crystallizer operated batchwise. The crystal growth rate is proportional to the supersaturation to the 2.9 power, and the nucleation rate to the 4.2 power. The uncleation behavior for NTO-water system in DTB crystallizer was grasped according to Mersmann's criteria. The nucleation in this crystallizer was found to act with heterogeneous nucleation and surface uncleation simultaneously. Simplified relation was derived for calculation of mean crystal size of product crystals from the batch cooling crystallizer. The obtained relation was verified by a set of experiments.

  • PDF

Effect of Heat Capacity of Coagulant on Morphology of PVDF-Silica Mixture Through TIPS Process for the Application of Porous Membrane (다공성 분리막으로 응용을 위한 PVDF-실리카 혼합물의 응고액 열용량 변화에 따른 모폴로지 변화)

  • Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.458-467
    • /
    • 2017
  • In this study, we prepared PVDF membranes via TIPS for water treatment applications. PVDF was used for its excellent chemical and mechanical properties. The effect of coagulation bath composition, temperature, and heat capacity on the overall membrane morphology was studied and observed using SEM. A mixture of DOP and DBP was used as the diluent, and silica was used as an additive. It was observed that as the heat capacity of the coagulation bath increased, the crystallization rate of PVDF decreased yielding larger pores. Also, as the heat capacity of the coagulation bath decreased, the crystallization rate of PVDF increased yielding smaller pores.

Study of Thermally Induced Phase Separation of Polyvinylidene Fluoride-Silica Mixture for the Preparation of Porous Polymeric Membrane (다공성 분리막 제조를 위한 폴리플루오르화비닐리덴-실리카 혼합물의 열유도상분리 연구)

  • Kim, Se Jong;Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.189-198
    • /
    • 2017
  • In this study, we used thermally induced phase separation (TIPS) to produce water treatment membrane and poly(vinylidene fluoride) (PVDF), silica with excellent mechanical properties and chemical resistance to evaluate characterization of the membrane. The diluents used for the characterization were dioctyl phthalate (DOP) and dibutyl phthalate (DBP). We observed the crystallization temperature, cloud point and SEM images to see the manufacture conditions according to the ratio of PVDF and silica. The crystallization temperature and cloud point increased with the contents of silica. Through the phase diagram drawn from these results, the conditions for the preparation of the membrane confirmed.