Removal Characteristics of Phosphorus at Synthetic Variation of Zirconium Mesoporous Structure

지르코늄 메조기공 구조체의 합성조건 변화에 따른 인 제거 특성

  • Lee, Sang-hyup (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • Lee, Byoung-cheun (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • Lee, Kwan-yong (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • Choi, Yong-su (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • Park, Ki-young (Department of Civil and Environmental System Engineering, Konkuk University)
  • 이상협 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 이병천 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 이관용 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 최용수 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 박기영 (건국대학교 사회환경시스템공학과)
  • Received : 2005.07.26
  • Accepted : 2005.08.29
  • Published : 2005.11.30

Abstract

The focus of this study was to examine the phosphorus removal characteristic by zirconium mesoporous structured material synthesized on various conditions. The zirconium sulfate-surfactant mesoporous structured material(ZS) was synthesized by hydro-thermal synthesis. The material has regular hexagonal array of surfactant micelles and sulfate ion ($HSO_4{^-}$). We confirmed that sulfate ion in zirconium mesoporous structured material can be ion-exchanged with phosphate ion ($H_2PO_4{^-}$) in phosphoric acid solution. On the X-ray diffraction (XRD) pattern of ZS, three peaks which shows the important characteristics of hexagonal crystal lattice were observed at (100), (110) and (200). The transmission electron micrograph (TEM) show high crystallization with pore size about $47{\AA}$. The maximum adsorption capacity of ZS was as great as 3.2 mmol-P/g-ZS. From the adsorption isotherm, correlation coefficients were higher for the Langmuir isotherm than the Freundlich isotherm. With the respect of chain length of surfactant, the adsorption capacity for phosphate synthesized with C12 was higher than C16 and C18. The highest amount of adsorbed phosphate on ZS was observed at the surfactant-to-zirconium molar ratio of 0.5 to 1.

Keywords

Acknowledgement

Grant : 차세대 핵심 환경 기술개발사업

Supported by : 환경부

References

  1. 김동준, 유성구, 배광수, 이태진, 서길수, Periodic mesoporous organosilica의 합성에 관한 연구, 한국공업화학회지, 14(8), pp. 1076-1080 (2003)
  2. 김민수, 강선홍, 난각을 이용한 폐수중의 인 제거에 관한 연구, 상하수도학회지, 18(2), pp. 174-180 (2004)
  3. 김응호, 임수빈, 정호찬, 이억재, 조진규, 완전호합형 정석탈 인반응조에서 미분말 전로슬래그를 이용한 고농도 인의 회수, 한국물환경학회지, 21(1), pp. 59-65 (2005)
  4. 김종석, 유명진, 굴 껍질의 정석 반응을 이용한 하수중의 인 제거에 관한 연구, 대한환경공학회 추계학술발표회 논문초록집, pp. 66-70 (1997)
  5. 김화중, 유재철, MCM-41 분자체의 합성에 초기 pH가 미치는 영향, 한국공업화학회지, 8(3), pp. 463-472 (1997)
  6. 유성구, 이두형, 서길수 이태진, 구형 메조포어 MCM-41의 합성에 관한 연구, 한국공업화학회지, 10(7), pp. 1096-1098 (1999)
  7. 이병천, 이관용, 이상협, 최용수, 박기영, 지르코늄 메조기공 구조체를 이용한 수중의 인 제거, 상하수도학회지, 19 (4), pp. 455-461 (2005)
  8. 장훈, 강선흥, 정석탈인법의 정석재로서의 소뼈의 활용성에 관한 연구, 한국물환경학회지, 17(4), pp. 517-524 (2001)
  9. Arora, M. L., Edwin, F. B., and Margaret, B. U., Technology Evaluation of Sequencing Batch Reactors, J. WPCF, 57(8), pp. 56-71 (1985)
  10. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C.T-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and Schlenker, J. L., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc., 114(27), pp. 10834-10843 (1992) https://doi.org/10.1021/ja00053a020
  11. Behrman, T. K., Weil, G. W., and Jones, E. R., A Review of Biological Phosphorus Removal Technology, Water pollution control federation annual conference, Walsh, October (1983)
  12. Ciesla, U., Schacht, S., Stucky, G. D., Unger, K. K. and Schuth, F., Formation of a Porous Zirconium Ozo Phosphate with a High Surface Area by a Surfactant-Assisted Synthesis, Angew. Chem. Int. Ed. Engl., 35(5), pp. 541-543 (1996) https://doi.org/10.1002/anie.199605411
  13. Ciesla, U., Froba, M., Stucky, G. and Schuth, F., Highly Ordered Porous Zirconias from Surfactant-controlled Syntheses: Zirconium Oxide-sulfate and Zirconium Oxo Phosphate, Chem. Mater., 11(2), pp. 227-234 (1999) https://doi.org/10.1021/cm980205v
  14. lwamoto, M., Kitagawa, H., Watanabe, Y., Higly Effective Removal of Arsenate and Arsenite Ion through Aanion Exchange on Zirconium Sulfate-surfactant Micelle Mesostructure, Chemistry Letters, pp. 814-815 (2002)
  15. Lee, J. W., Yoo, U., J., and Chung, T. H., Evaluation of Organic Wastes as a Carbon Source for Improvement of the Biological Nutrient Removal, Proceeding of Asian Waterqual '99, pp. 487-492 (1999)
  16. Ozacar, M., Adsorption of Phosphate from Aqueous Solution onto Alunite, Chemosphere, 51, pp. 321-327 (2003) https://doi.org/10.1016/S0045-6535(02)00847-0
  17. Putman, B., Meeren, P. V. and Thierens, D., Reduced Bovine Serum Albumin Adsorption by Prephosphatation of Powered Zirconium Cxide, Colloids and Surfaces, 121, pp. 81-88 (1997) https://doi.org/10.1016/S0927-7757(96)03978-7
  18. Reddy, J. S. and Sayari, A., Nanporous Zirconium Oxide Prepared Using the Supramolecular Templating Aapproach, Catalysis Letter, 38, pp. 219-223 (1996) https://doi.org/10.1007/BF00806572
  19. Sayari, A., Characterization of Microporous-mesoporous MCM-41 Silicates Prepared in the Presence of Octyltrimethyl-ammonium Bromide, Catalysis Letter, 49, pp. 147-153 (1997) https://doi.org/10.1023/A:1019073809368
  20. Takai, T., 지르코늄계 흡착제에 의한 탈인 및 자원화 기술, 첨단환경기술, 5, pp. 22-28 (2002)
  21. Weston, Roy F Inc., Emerging Technology Assessment of Phostrip, A/O, and Bardenpho Processes for Biological Phosphorus Removal, USEPA Contract No. 68-03-3019 (1984)
  22. Wu, P. and Iwamoto, M., Anion Exchange between Sulfate Ion and Hydrogenphosphate Ion to form Mesoporous Zirconium-Phosphorus Complex Oxide, Chemistry Letters, pp. 1213-1214 (1998)
  23. Zoltek, J. Jr, Phosphorous Removal by Orthophosphate Nucleation, Journal of WPCF, 46(11), pp. 2498-2520 (1974)