DOI QR코드

DOI QR Code

Solid Dispersions as a Drug Delivery System

  • Kim, Ki-Taek (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Jae-Young (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Mee-Yeon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Song, Chung-Kil (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Choi, Joon-Ho (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Dae-Duk (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Received : 2011.03.15
  • Accepted : 2011.03.29
  • Published : 2011.06.20

Abstract

Solid dispersion, defined as the dispersion of one or more active ingredient in a carrier or matrix at solid state, is an efficient strategy for improving dissolution of poorly water-soluble drugs for enhancement of their bioavailability. Compared to other conventional formulations such as tablets or capsules, solid dispersion which can be prepared by various methods has many advantages. However, despite numerous studies which have been carried out, limitations for commercializing these products remain to be solved. For example, during the manufacturing process or storage, amorphous form of solid dispersion can be converted into crystalline form. That is, the dissolution rate of solid dispersion would continuously decrease during storage, resulting in a product of no value. To resolve these problems, studies have been conducted on the effects of excipients. In fact, modification of the solid dispersions to overcome these disadvantages has progressed from the first generation to the recent third generation products. In this review, an overview on solid dispersions in general will be given with emphasis on the various manufacturing processes which include the use of polymers and on the stabilization strategies which include methods to prevent crystallization.

Keywords

References

  1. Ali, A.A., Gorashi, A.S., 1984. Absorption and dissolution of nitrofurantoin from different experimental formulations. Int. J. Pharm. 19, 297-306. https://doi.org/10.1016/0378-5173(84)90059-0
  2. Andronis, V., Yoshioka, M., Zografi, G., 1997. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J. Pharm. Sci. 86, 346-351. https://doi.org/10.1021/js9602711
  3. Bergh, M., Magnusson, K., Nilsson, J.L. Karlberg, A.T., 1998a. Formation of formaldehyde and peroxides by air oxidation of high purity polyoxyethylene surfactants. Contact Dermatitis. 39, 14-20. https://doi.org/10.1111/j.1600-0536.1998.tb05805.x
  4. Bergh, M., Shao, L.P., Hagelthorn, G., Gafvert, E., Nilsson, J.L.G., Karlberg, A.T., 1998b. Contact allergens from surfactants. Atmospheric oxidation of polyoxyethylene alcohols, formation of ethoxylated aldehydes, and their allergenic activity. J. Pharm. Sci. 87, 276-282. https://doi.org/10.1021/js9704036
  5. Bikiaris, D., 2005. Physicochemical studies on solid dispersions of poorly water-soluble drugs: Evaluation of capabilities and limitations of thermal analysis techniques. Thermochim. Acta. 439, 58-67. https://doi.org/10.1016/j.tca.2005.09.011
  6. Bindra, D.S., Williams, T.D., Stella, V.J., 1994. Degradation of O-6-Benzylguanine in Aqueous Polyethylene-Glycol-400 (Peg-400) Solutions - Concerns with Formaldehyde in Peg-400. Pharm. Res. 11, 1060-1064. https://doi.org/10.1023/A:1018903908385
  7. Breitenbach, J., 2002. Melt extrusion: from process to drug delivery technology. European Journal of Pharmaceutics and Biopharmaceutics. 54, 107-117. https://doi.org/10.1016/S0939-6411(02)00061-9
  8. Ceballos, A., Cirri, M., Maestrelli, F., Corti, G., Mura, P., 2005. Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Farmaco. 60, 913-918. https://doi.org/10.1016/j.farmac.2005.07.002
  9. Chaudhari.P.D., S.P.K., 2006. Current trends in solid dispersions techniques. Pharmaceutical Reviews. 4.
  10. Chauhan, B., Shimpi, S., Paradkar, A., 2005. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur. J. Pharm. Sci. 26, 219-230. https://doi.org/10.1016/j.ejps.2005.06.005
  11. Chiou, W.L., 1977. Pharmaceutical applications of solid dispersion systems: X-ray diffraction and aqueous solubility studies on griseofulvin-polyethylene glycol 6000 systems. J. Pharm. Sci. 66, 989-991. https://doi.org/10.1002/jps.2600660722
  12. Chiou, W.L., Riegelma.S, 1970. Oral Absorption of Griseofulvin in Dogs - Increased Absorption Via Solid Dispersion in Polyethylene Glycol-6000. J. Pharm. Sci. 59, 937-942. https://doi.org/10.1002/jps.2600590703
  13. Chiou, W.L., Riegelman, S., 1969. Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J. Pharm. Sci. 58, 1505-1510. https://doi.org/10.1002/jps.2600581218
  14. Chiou, W.L., Riegelman, S., 1971. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci. 60, 1281-1302. https://doi.org/10.1002/jps.2600600902
  15. Cho, S.W., Lee, J.S., Choi, S.H., 2004. Enhanced oral bioavailability of poorly absorbed drugs. I. Screening of absorption carrier for the ceftriaxone complex. Journal of Pharmaceutical Sciences. 93, 612-620. https://doi.org/10.1002/jps.10563
  16. Chokshi, R.J., Shah, N.H., Sandhu, H.K., Malick, A.W., Zia, H., 2008. Stabilization of low glass transition temperature indomethacin formulations: impact of polymer-type and its concentration. J. Pharm. Sci. 97, 2286-2298. https://doi.org/10.1002/jps.21174
  17. Chutimaworapan, S., Ritthidej, G.C., Yonemochi, E., Oguchi, T., Yamamoto, K., 2000. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Development and Industrial Pharmacy. 26, 1141-1150. https://doi.org/10.1081/DDC-100100985
  18. Corrigan, O.I., Healy, A.M., 2002. Surface active carriers in pharmaceutical products and system. Encyclopedia of pharmaceutical technology. 3, 2639-2653.
  19. Corrigan, O.I., Timoney, R.F., Whelan, M.J., 1976. The influence of polyvinylpyrrolidone on the solution and bioavailability of hydrochlorothiazide. J. Pharm. Pharmacol. 28, 703-706. https://doi.org/10.1111/j.2042-7158.1976.tb02840.x
  20. Damian, F., Blaton, N., Kinget, R., Van den Mooter, G., 2002. Physical stability of solid dispersions of the antiviral agent UC-781 with PEG 6000, Gelucire 44/14 and PVP K30. Int. J. Pharm. 244, 87-98. https://doi.org/10.1016/S0378-5173(02)00316-2
  21. Damian, F., Blaton, N., Naesens, L., Balzarini, J., Kinget, R., Augustijns, P., Van den Mooter, G., 2000. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur. J. Pharm. Sci. 10, 311-322. https://doi.org/10.1016/S0928-0987(00)00084-1
  22. Desai, J., Alexander, K., Riga, A., 2006. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int. J. Pharm. 308, 115-123. https://doi.org/10.1016/j.ijpharm.2005.10.034
  23. Dhirendra, K., Lewis, S., Udupa, N., Atin, K., 2009. Solid dispersions: a review. Pak. J. Pharm. Sci. 22, 234-246.
  24. Doherty, C., York, P., 1989. The in-vitro pH-dissolution dependence and in-vivo bioavailability of frusemide-PVP solid dispersions. J. Pharm. Pharmacol. 41, 73-78. https://doi.org/10.1111/j.2042-7158.1989.tb06396.x
  25. Dubois, J.L., Ford, J.L., 1985. Similarities in the release rates of different drugs from polyethylene glycol 6000 solid dispersions. J. Pharm. Pharmacol. 37, 494-495. https://doi.org/10.1111/j.2042-7158.1985.tb03048.x
  26. El-Zein, H., Riad, L., Elbary, A.A., 1998. Enhancement of carbamazepine dissolution - in vitro and in vivo evaluation. Int. J. Pharm. 168, 209-220. https://doi.org/10.1016/S0378-5173(98)00093-3
  27. Fawaz, F., Bonini, F., Guyot, M., Bildet, J., Maury, M., Lagueny, A.M., 1996. Bioavailability of norfloxacin from PEG 6000 solid dispersion and cyclodextrin inclusion complexes in rabbits. Int. J. Pharm. 132, 271-275. https://doi.org/10.1016/0378-5173(95)04387-X
  28. Fernandez, M., Margarit, M.V., Rodriguez, I.C., Cerezo, A., 1993. Dissolution kinetics of piroxicam in solid dispersions with polyethylene glycol-4000. Int. J. Pharm. 98, 29-35. https://doi.org/10.1016/0378-5173(93)90037-G
  29. Ford, J.L., A.F., S., Dubois, J.L., 1986. The properties of solid dispersions of indomethacin or phenylbutazone in polyethylene glycol. Int. J. Pharm. 28, 11-22. https://doi.org/10.1016/0378-5173(86)90142-0
  30. Ford, J.L., and Rubinstein, M.H., 1980. Formulation and Aging of Tablets Prepared from Indomethacin-Polyethylene Glycol 6000 Solid Dispersions. Pharmaceutica Acta. Helvetiae. 55, 1-7.
  31. Forster, A., Hempenstall, J., Rades, T., 2001a. Characterization of glass solutions of poorly water-soluble drugs produced by melt extrusion with hydrophilic amorphous polymers. J. Pharm. Pharmacol. 53, 303-315. https://doi.org/10.1211/0022357011775532
  32. Forster, A., Hempenstall, J., Tucker, I., Rades, T., 2001b. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int. J. Pharm. 226, 147-161. https://doi.org/10.1016/S0378-5173(01)00801-8
  33. Frontini, R., Mielck, J.B., 1995. Formation of Formaldehyde in Polyethyleneglycol and in Poloxamer under Stress Conditions. Int. J. Pharm. 114, 121-123. https://doi.org/10.1016/0378-5173(94)00221-P
  34. Garcia-Zubiri, I.X., Gonzalez-Gaitano, G., Isasi, J.R., 2006. Thermal stability of solid dispersions of naphthalene derivatives with beta-cyclodextrin and beta-cyclodextrin polymers. Thermochim. Acta. 444, 57-64. https://doi.org/10.1016/j.tca.2006.02.024
  35. Gardner, D., 1997. The intelisite capsule: a new easy to use approach for assessing regional drug absorption from gastrointestinal tract. Pharm. Tech. Eur. 9, 46-53.
  36. Ghaderi, R., Artursson, P., Carlfors, J., 1999. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Pharm. Res. 16, 676-681. https://doi.org/10.1023/A:1018868423309
  37. Ghaste, R., C., D.D., Shah, R.R., Ghodke, D.S., 2009. Solid Dispersions : An Overview. Pharmaceutical Reviews. 7.
  38. Gines, J.M., Arias, M.J., Moyano, J.R., Sanchezsoto, P.J., 1996. Thermal investigation of crystallization of polyethylene glycols in solid dispersions containing oxazepam. Int. J. Pharm. 143, 247-253. https://doi.org/10.1016/S0378-5173(96)04702-3
  39. Goldberg, A.H., Gibaldi, M., Kanig, J.L., 1965. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. I. Theoretical considerations and discussion of the literature. J. Pharm. Sci. 54, 1145-1148. https://doi.org/10.1002/jps.2600540810
  40. Goldberg, A.H., Gibaldi, M., Kanig, J.L., 1966. Increasing Dissolution Rates and Gastrointestinal Absorption of Drugs Via Solid Solutions and Eutectic Mixtures .2. Experimental Evaluation of a Eutectic Mixture - Urea-Acetaminophen System. Journal of Pharmaceutical Sciences. 55, 482-487. https://doi.org/10.1002/jps.2600550507
  41. Goldberg, A.H., Gibaldi, M., Kanig, J.L., Mayersohn, M., 1966. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. IV. Chloramphenicol--urea system. J. Pharm. Sci. 55, 581-583. https://doi.org/10.1002/jps.2600550610
  42. Gong, K., Viboonkiat, R., Rehman, I.U., Buckton, G., Darr, J.A., 2005. Formation and characterization of porous indomethacin- PVP coprecipitates prepared using solvent-free supercritical fluid processing. J. Pharm. Sci. 94, 2583-2590. https://doi.org/10.1002/jps.20474
  43. Gupta, P., Kakumanu, V.K., Bansal, A.K., 2004. Stability and solubility of celecoxib-PVP amorphous dispersions: a molecular perspective. Pharm. Res. 21, 1762-1769. https://doi.org/10.1023/B:PHAM.0000045226.42859.b8
  44. Guyot, M., Fawaz, F., Bildet, J., Bonini, F., Lagueny, A.M., 1995. Physicochemical Characterization and Dissolution of Norfloxacin/Cyclodextrin Inclusion-Compounds and Peg Solid Dispersions. Int. J. Pharm. 123, 53-63. https://doi.org/10.1016/0378-5173(95)00039-L
  45. Hasegawa, S., Hamaura, T., Furuyama, N., Kusai, A., Yonemochi, E., Terada, K., 2005. Effects of water content in physical mixture and heating temperature on crystallinity of troglitazone-PVP K30 solid dispersions prepared by closed melting method. Int. J. Pharm. 302, 103-112. https://doi.org/10.1016/j.ijpharm.2005.06.021
  46. Hirasawa, N., Ishise, S., Miyata, H., Danjo, K., 2003. Physicochemical characterization and drug release studies of nilvadipine solid dispersions using water-insoluble polymer as a carrier. Drug Dev. Ind. Pharm. 29, 339-344. https://doi.org/10.1081/DDC-120018207
  47. Itai, S., Nemoto, M., Kouchiwa, S., Murayama, H., Nagai, T., 1985. Influence of wetting factors on the dissolution behavior of flufenamic acid. Chem. Pharm. Bull. (Tokyo) 33, 5464-5473. https://doi.org/10.1248/cpb.33.5464
  48. Jachowicz, R., 1987. Dissolution rates of partially water-soluble drugs from solid dispersion systems. 1. Prednisolone. Int. J. Pharm. 35, 1-5. https://doi.org/10.1016/0378-5173(87)90067-6
  49. Joshi, H.N., Tejwani, R.W., Davidovich, M., Sahasrabudhe, V.P., Jemal, M., Bathala, M.S., Varia, S.A., Serajuddin, A.T., 2004. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int. J. Pharm. 269, 251-258. https://doi.org/10.1016/j.ijpharm.2003.09.002
  50. Kang, B.K., Lee, J.S., Chon, S.K., Jeong, S.Y., Yuk, S.H., Khang, G., Lee, H.B., Cho, S.H., 2004. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm. 274, 65-73. https://doi.org/10.1016/j.ijpharm.2003.12.028
  51. Kanig, J.L., 1964. Properties of Fused Mannitol in Compressed Tablets. J. Pharm. Sci. 53, 188-192. https://doi.org/10.1002/jps.2600530217
  52. Karatas, A., Yuksel, N., Baykara, T., 2005. Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrasol. Farmaco. 60, 777-782. https://doi.org/10.1016/j.farmac.2005.04.014
  53. Karavas, E., Georgarakis, E., Bikiaris, D., 2006a. Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. Eur. J. Pharm. Biopharm. 64, 115-126. https://doi.org/10.1016/j.ejpb.2005.12.013
  54. Karavas, E., Ktistis, G., Xenakis, A., Georgarakis, E., 2006b. Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. Eur. J. Pharm. Biopharm. 63, 103-114. https://doi.org/10.1016/j.ejpb.2006.01.016
  55. Kassem, A.A., Zaki, S.A., Mursi, N.M., Tayel, S.A., 1979. Chloramphenicol solid dispersion system 1. Pharm. Ind. 41, 390-393.
  56. Kearney, A.S., Gabriel, D.L., Mehta, S.C., Radebaugh, G.W., 1994. Effect of polyvinylpyrrolidone on the crystallinity and dissolution rate of solid dispersions of the antiinflammatory Ci-987. Int. J. Pharm. 104, 169-174. https://doi.org/10.1016/0378-5173(94)90192-9
  57. Khan, G.M., Zhu, J.B., 1998. Preparation, characterization, and dissolution studies of ibuprofen solid dispersions using polyethylene glycol, talc, and peg-talc as dispersion carriers. Drug. Dev. Ind. Pharm. 24, 455-462. https://doi.org/10.3109/03639049809085643
  58. Khougaz, K., Clas, S.D., 2000. Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J. Pharm. Sci. 89, 1325-1334. https://doi.org/10.1002/1520-6017(200010)89:10<1325::AID-JPS10>3.0.CO;2-5
  59. Kim, K.H., Jarowski, C.I., 1977. Surface tension lowering and dissolution rate of hydrocortisone from solid solutions of selected n-acyl esters of cholesterol. J. Pharm. Sci. 66, 1536-1540. https://doi.org/10.1002/jps.2600661108
  60. Kondo, N., Iwao, T., Hirai, K., Fukuda, M., Yamanouchi, K., Yokoyama, K., Miyaji, M., Ishihara, Y., Kon, K., Ogawa, Y., et al., 1994. Improved oral absorption of enteric coprecipitates of a poorly soluble drug. J. Pharm. Sci. 83, 566-570. https://doi.org/10.1002/jps.2600830425
  61. Konno, H., and Taylor, L.S., 2006. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J. Pharm. Sci. 95, 2692-2705. https://doi.org/10.1002/jps.20697
  62. Konno, H., and Taylor, L.S., 2008. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm. Res. 25, 969-978. https://doi.org/10.1007/s11095-007-9331-3
  63. Langer, M., Holtje, M., Urbanetz, N.A., Brandt, B., Holtje, H.D., and Lippold, B.C., 2003. Investigations on the predictability of the formation of glassy solid solutions of drugs in sugar alcohols. Int. J. Pharm. 252, 167-179. https://doi.org/10.1016/S0378-5173(02)00647-6
  64. Leuenberger, H., 2002. Spray freeze-drying - the process of choice for low water soluble drugs? Journal of Nanoparticle Research. 4, 111-119. https://doi.org/10.1023/A:1020135603052
  65. Leuner, C., Dressman, J., 2000. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50, 47-60. https://doi.org/10.1016/S0939-6411(00)00076-X
  66. Li, L., AbuBaker, O., Shao, Z.J., 2006. Characterization of poly(ethylene oxide) as a drug carrier in hot-melt extrusion. Drug Dev. Ind. Pharm. 32, 991-1002. https://doi.org/10.1080/03639040600559057
  67. Lin, C.W., Cham, T.M., 1996. Effect of particle size on the available surface area of nifedipine from nifedipine-polyethylene glycol 6000 solid dispersions. Int. J. Pharm. 127, 261-272. https://doi.org/10.1016/0378-5173(95)04245-8
  68. Liu, R., 2008. Water-insoluble drug formulation. 669 p.
  69. Lloyd, G.R., Craig, D.Q., Smith, A., 1999. A calorimetric investigation into the interaction between paracetamol and polyethlene glycol 4000 in physical mixes and solid dispersions. Eur. J. Pharm. Biopharm. 48, 59-65. https://doi.org/10.1016/S0939-6411(99)00022-3
  70. Lo, W.Y., Law, S.L., 1996. Dissolution behavior of griseofulvin solid dispersions using polyethylene glycol, talc, and their combination as dispersion carriers. Drug Dev. Ind. Pharm. 22, 231-236. https://doi.org/10.3109/03639049609058566
  71. Majerik, V., Charbit, G., Badens, E., Horvath, G., Szokonya, L., Bosc, N., Teillaud, E., 2007. Bioavailability enhancement of an active substance by supercritical antisolvent precipitation. Journal of Supercritical Fluids. 40, 101-110. https://doi.org/10.1016/j.supflu.2006.03.027
  72. Margarit, M.V., Rodriquez, I.C., Cerezo, A., 1994. Physical characteristics and dissolution kinetics of solid dispersions of ketoprofen and polyethylene glycol 6000. Int. J. Pharm. 108, 101-107. https://doi.org/10.1016/0378-5173(94)90320-4
  73. Matsumoto, T., Zografi, G., 1999. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm. Res. 16, 1722-1728. https://doi.org/10.1023/A:1018906132279
  74. Mayersohn, M., Gibaldi, M., 1966. New method of solid-state dispersion for increasing dissolution rates. J. Pharm. Sci. 55, 1323-1324. https://doi.org/10.1002/jps.2600551138
  75. Miyazaki, T., Yoshioka, S., Aso, Y., Kojima, S., 2004. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J. Pharm. Sci. 93, 2710-2717. https://doi.org/10.1002/jps.20182
  76. Moneghini, M., Carcano, A., Zingone, G., Perissutti, B., 1998. Studies in dissolution enhancement of atenolol. Int. J. Pharm. 175, 177-183. https://doi.org/10.1016/S0378-5173(98)00281-6
  77. Muhrer, G., Meier, U., Fusaro, F., Albano, S., Mazzotti, M., 2006. Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: generation of drug microparticles and drug-polymer solid dispersions. Int. J. Pharm. 308, 69-83. https://doi.org/10.1016/j.ijpharm.2005.10.026
  78. Mura, P., Faucci, M.T., Manderioli, A., Bramanti, G., and Parrini, P., 1999. Thermal behavior and dissolution properties of naproxen from binary and ternary solid dispersions. Drug Dev. Ind. Pharm. 25, 257-264. https://doi.org/10.1081/DDC-100102169
  79. Ning, X., Sun, J., Han, X., Wu, Y., Yan, Z., Han, J., He, Z., 2011. Strategies to improve dissolution and oral absorption of glimepiride tablets: solid dispersion versus micronization techniques. Drug Dev. Ind. Pharm.
  80. Ohara, T., 2005. Dissolution mechanism of poorly water-soluble drug from extended release solid dispersion system with ethylcellulose and hydroxypropylmethylcellulose. Int. J. Pharm. 302, 95-102. https://doi.org/10.1016/j.ijpharm.2005.06.019
  81. Ohara, T., Kitamura, S., Kitagawa, T., Terada, K., 2005. Dissolution mechanism of poorly water-soluble drug from extended release solid dispersion system with ethylcellulose and hydroxypropylmethylcellulose. Int. J. Pharm. 302, 95-102. https://doi.org/10.1016/j.ijpharm.2005.06.019
  82. Okonogi, S., Oguchi, T., Yonemochi, E., Puttipipatkhachorn, S., Yamamoto, K., 1997a. Improved dissolution of ofloxacin via solid dispersion. Int. J. Pharm. 156, 175-180. https://doi.org/10.1016/S0378-5173(97)00196-8
  83. Okonogi, S., Yonemochi, E., Oguchi, T., Puttipipatkhachorn, S., Yamamoto, K., 1997b. Enhanced dissolution of ursodeoxycholic acid from the solid dispersion. Drug Dev. Ind. Pharm. 23, 1115-1121. https://doi.org/10.3109/03639049709150502
  84. Owusu-Ababio, G., Ebube, N.K., Reams, R., Habib, M., 1998. Comparative dissolution studies for mefenamic acid-polyethylene glycol solid dispersion systems and tablets. Pharm. Dev. Technol. 3, 405-412. https://doi.org/10.3109/10837459809009868
  85. Paradkar, A., Ambike, A.A., Jadhav, B.K., Mahadik, K.R., 2004. Characterization of curcumin-PVP solid dispersion obtained by spray drying. Int. J. Pharm. 271, 281-286. https://doi.org/10.1016/j.ijpharm.2003.11.014
  86. Passerini, N., Albertini, B., Gonzalez-Rodriguez, M.L., Cavallari, C., Rodriguez, L., 2002. Preparation and characterisation of ibuprofen-poloxamer 188 granules obtained by melt granulation. Eur. J. Pharm. Sci. 15, 71-78. https://doi.org/10.1016/S0928-0987(01)00210-X
  87. Perng, C.Y., Kearney, A.S., Patel, K., Palepu, N.R., Zuber, G., 1998. Investigation of formulation approaches to improve the dissolution of SB-210661, a poorly water soluble 5-lipoxygenase inhibitor. Int. J. Pharm. 176, 31-38. https://doi.org/10.1016/S0378-5173(98)00296-8
  88. Pokharkar, V.B., Mandpe, L.P., Padamwar, M.N., Ambike, A.A., Mahadik, K.R., Paradkar, A., 2006. Development, characterization and stabilization of amorphous form of a low T-g drug. Powder Technol. 167, 20-25. https://doi.org/10.1016/j.powtec.2006.05.012
  89. Pouton, C.W., 2006a. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 29, 278-287. https://doi.org/10.1016/j.ejps.2006.04.016
  90. Pozzi, F., Longo, A., Lazzarini, C., Carenzi, A., 1991. Formulations of Ubidecarenone with Improved Bioavailability. European Journal of Pharmaceutics and Biopharmaceutics. 37, 243-246.
  91. Prabhu, S., Ortega, M., Ma, C., 2005. Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam. Int. J. Pharm. 301, 209-216. https://doi.org/10.1016/j.ijpharm.2005.05.032
  92. Price, J.C., 1994. Polyethylene glycol. Handbook of Pharmaceutical Excipients
  93. Ramadan, E.M., Abd El-Gawad, A.H., Nouh, A.T., 1987. Bioavailability and erosive activity of solid dispersions of some non-steroidal anti-inflammatory drugs. Pharm. Ind. 49, 508-513.
  94. Rasenack, N., and Muller, B.W., 2004. Micron-size drug particles: common and novel micronization techniques. Pharm. Dev. Technol. 9, 1-13. https://doi.org/10.1081/PDT-120027417
  95. Rodier, E., Lochard, H., Sauceau, M., Letourneau, J.J., Freiss, B., Fages, J., 2005. A three step supercritical process to improve the dissolution rate of Eflucimibe. European Journal of Pharmaceutical Sciences. 26, 184-193. https://doi.org/10.1016/j.ejps.2005.05.011
  96. Saers, E.S., Nystrom, C., Alden, M., 1993. Physicochemical Aspects of Drug Release .16. The Effect of Storage on Drug Dissolution from Solid Dispersions and the Influence of Cooling Rate and Incorporation of Surfactant. International Journal of Pharmaceutics. 90, 105-118. https://doi.org/10.1016/0378-5173(93)90147-8
  97. Save, T., Venkitachalam, P., 1992. Studies on Solid Dispersions of Nifedipine. Drug Development and Industrial Pharmacy. 18, 1663-1679. https://doi.org/10.3109/03639049209040893
  98. Sekiguchi, K., Obi, N., 1961. Studies on Absorption of Eutectic Mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull. 9, 866-872. https://doi.org/10.1248/cpb.9.866
  99. Sekiguchi, K., Obi, N., Ueda, Y., 1964. Studies on Absorption of Eutectic Mixture. Ii. Absorption of Fused Conglomerates of Chloramphenicol and Urea in Rabbits. Chem. Pharm. Bull. (Tokyo) 12, 134-144. https://doi.org/10.1248/cpb.12.134
  100. Seo, A., Schaefer, T., 2001. Melt agglomeration with polyethylene glycol beads at a low impeller speed in a high shear mixer. Eur. J. Pharm. Biopharm. 52, 315-325. https://doi.org/10.1016/S0939-6411(01)00183-7
  101. Serajuddin, A.T., 1999. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88, 1058-1066. https://doi.org/10.1021/js980403l
  102. Serajuddin, A.T., Sheen, P.C., Mufson, D., Bernstein, D.F., Augustine, M.A., 1988. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions. Journal of Pharmaceutical Sciences. 77, 414-417. https://doi.org/10.1002/jps.2600770512
  103. Sethia, S., Squillante, E., 2002. Physicochemical characterization of solid dispersions of carbamazepine formulated by supercritical carbon dioxide and conventional solvent evaporation method. J. Pharm. Sci. 91, 1948-1957. https://doi.org/10.1002/jps.10186
  104. Shah, J.C., Chen, J.R., Chow, D., 1995. Preformulation study of etoposide. 2. Increased solubility and dissolution rate by solidsolid dispersions. Int. J. Pharm. 113, 103-111. https://doi.org/10.1016/0378-5173(94)00195-B
  105. Sheu, M.T., Yeh, C.M., Sokoloski, T.D., 1994. Characterization and dissolution of fenofibrate solid dispersion systems. Int. J. Pharm. 103, 137-146. https://doi.org/10.1016/0378-5173(94)90094-9
  106. Shimpi, S.L., Chauhan, B., Mahadik, K.R., Paradkar, A., 2005. Stabilization and improved in vivo performance of amorphous etoricoxib using Gelucire 50/13. Pharm. Res. 22, 1727-1734. https://doi.org/10.1007/s11095-005-6694-1
  107. Shin, S., Oh, I., Lee, Y., Choi, H., Choi, J., 1998. Enhanced dissolution of furosemide by coprecipitating or cogrinding with crospovidone. Int. J. Pharm. 175, 17-24. https://doi.org/10.1016/S0378-5173(98)00260-9
  108. Shukla, A.J., 1994. Polymethacrylates. Handbook of Pharmaceutical Excipients.
  109. Simonelli, A.P., Mehta, S.C., Higuchi, W.I., 1969. Dissolution rates of high energy polyvinylpyrrolidone (PVP)-sulfathiazole coprecipitates. J. Pharm. Sci. 58, 538-549. https://doi.org/10.1002/jps.2600580503
  110. Sjokvist, E., Nystrom, C., Alden, M., 1992. Physicochemical aspects of drug release XIV. The effects of some ionic and non-ionic surfactants on properties of a sparingly soluble drug in solid dispersions. Int. J. Pharm. 79, 123-133. https://doi.org/10.1016/0378-5173(92)90103-9
  111. Stoll, R.G., Bates, T.R., Nieforth, K.A., Swarbrick, J., 1969. Some physical factors affecting the enhanced blepharoptotic activity of orally administered reserpine-cholanic acid coprecipitates. J. Pharm. Sci. 58, 1457-1459. https://doi.org/10.1002/jps.2600581206
  112. Streubel, A., 2006. Drug delivery to the upper small intestine window using gastroretentive technologies. Curr. Opin. Pharmacol. 6, 501-508. https://doi.org/10.1016/j.coph.2006.04.007
  113. Subramaniam, B., Rajewski, R.A., Snavely, K., 1997. Pharmaceutical processing with supercritical carbon dioxide. Journal of Pharmaceutical Sciences. 86, 885-890. https://doi.org/10.1021/js9700661
  114. Suzuki, H., Miyamoto, N., Masada, T., Hayakawa, E., Ito, K., 1996. Solid dispersions of benidipine hydrochloride. 1. Preparations using different solvent systems and dissolution properties. Chem. Pharm. Bull 44, 364-371. https://doi.org/10.1248/cpb.44.364
  115. Suzuki, H., Sunada, H., 1997. Comparison of nicotinamide, ethylurea and polyethylene glycol as carriers for nifedipine solid dispersion systems. Chem. Pharm. Bull. (Tokyo) 45, 1688-1693. https://doi.org/10.1248/cpb.45.1688
  116. Suzuki, H., Sunada, H., 1998. Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers. Chem. Pharm. Bull. (Tokyo) 46, 482-487. https://doi.org/10.1248/cpb.46.482
  117. Tanaka, N., Imai, K., Okimoto, K., Ueda, S., Tokunaga, Y., Ibuki, R., Higaki, K., Kimura, T., 2006. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): in vivo evaluation. J. Control Release. 112, 51-56. https://doi.org/10.1016/j.jconrel.2006.01.020
  118. Tanaka, N., Imai, K., Okimoto, K., Ueda, S., Tokunaga, Y., Ohike, A., Ibuki, R., Higaki, K., Kimura, T., 2005. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine. J. Control Release. 108, 386-395. https://doi.org/10.1016/j.jconrel.2005.08.024
  119. Tantishaiyakul, V., Kaewnopparat, N., Ingkatawornwong, S., 1999. Properties of solid dispersions of piroxicam in polyvinylpyrrolidone. Int. J. Pharm. 181, 143-151. https://doi.org/10.1016/S0378-5173(99)00070-8
  120. Tashtoush, B.M., Al-Qashi, Z.S., Najib, N.M., 2004. In vitro and in vivo evaluation of glibenclamide in solid dispersion systems. Drug Development and Industrial Pharmacy. 30, 601-607. https://doi.org/10.1081/DDC-120037491
  121. Taylor, L.S., Zografi, G., 1997. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14, 1691-1698. https://doi.org/10.1023/A:1012167410376
  122. Timko, R.J., Lordi, N.G., 1984. Thermal-Analysis Studies of Glass Dispersion-Systems. Drug Development and Industrial Pharmacy. 10, 425-451. https://doi.org/10.3109/03639048409041398
  123. Torrado, S., Torrado, J.J., Cadorniga, R., 1996. Preparation, dissolution and characterization of albendazole solid dispersions. Int. J. Pharm. 140, 247-250. https://doi.org/10.1016/0378-5173(96)04586-3
  124. Trapani, G., Franco, M., Latrofa, A., Pantaleo, M.R., Provenzano, M.R., Sanna, E., Maciocco, E., Liso, S., 1999. Physicochemical characterization and in vivo properties of Zolpidem in solid dispersions with polyethylene glycol 4000 and 6000. Int. J. Pharm. 184, 121-130. https://doi.org/10.1016/S0378-5173(99)00112-X
  125. Turk, M., Helfgen, B., Hils, P., Lietzow, R., Schaber, K., 2002. Micronization of pharmaceutical substances by rapid expansion of supercritical solutions (RESS): Experiments and modeling. Particle & Particle Systems Characterization. 19, 327-335. https://doi.org/10.1002/1521-4117(200211)19:5<327::AID-PPSC327>3.0.CO;2-V
  126. Urbanetz, N.A., 2006. Stabilization of solid dispersions of nimodipine and polyethylene glycol 2000. Eur. J. Pharm. Sci. 28, 67-76. https://doi.org/10.1016/j.ejps.2005.12.009
  127. Valizadeh, H., Nokhodchi, A., Qarakhani, N., Zakeri-Milani, P., Azarmi, S., Hassanzadeh, D., Lobenberg, R., 2004. Physicochemical characterization of solid dispersions of indomethacin with PEG 6000, Myrj 52, lactose, sorbitol, dextrin, and Eudragit E100. Drug Dev. Ind. Pharm. 30, 303-317. https://doi.org/10.1081/DDC-120030426
  128. Van den Mooter, G., Weuts, I., De Ridder, T., Blaton, N., 2006. Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. Int. J. Pharm. 316, 1-6. https://doi.org/10.1016/j.ijpharm.2006.02.025
  129. Van den Mooter, G., Wuyts, M., Blaton, N., Busson, R., Grobet, P., Augustijns, P., Kinget, R., 2001. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur. J. Pharm. Sci. 12, 261-269. https://doi.org/10.1016/S0928-0987(00)00173-1
  130. van Drooge, D.J., Braeckmans, K., Hinrichs, W.L.J., Remaut, K., De Smedt, S.C., Frijlink, H.W., 2006a. Characterization of the mode of incorporation of lipophilic compounds in solid dispersions at the nanoscale using fluorescence resonance energy transfer (FRET). Macromol Rapid Comm. 27, 1149-1155. https://doi.org/10.1002/marc.200600177
  131. van Drooge, D.J., Hinrichs, W.L., Visser, M.R., Frijlink, H.W., 2006b. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int. J. Pharm. 310, 220-229. https://doi.org/10.1016/j.ijpharm.2005.12.007
  132. Vasconcelos, T., Sarmento, B., Costa, P., 2007. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today. 12, 1068-1075. https://doi.org/10.1016/j.drudis.2007.09.005
  133. Verreck, G., Chun, I., Peeters, J., Rosenblatt, J., Brewster, M.E., 2003a. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm. Res. 20, 810-817. https://doi.org/10.1023/A:1023450006281
  134. Verreck, G., Decorte, A., Heymans, K., Adriaensen, J., Liu, D., Tomasko, D., Arien, A., Peeters, J., Van den Mooter, G., Brewster, M.E., 2006a. Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int. J. Pharm. 327, 45-50. https://doi.org/10.1016/j.ijpharm.2006.07.024
  135. Verreck, G., Six, K., Van den Mooter, G., Baert, L., Peeters, J., Brewster, M.E., 2003b. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion--Part I. Int. J. Pharm. 251, 165-174. https://doi.org/10.1016/S0378-5173(02)00591-4
  136. Vilhelmsen, T., Eliasen, H., Schaefer, T., 2005. Effect of a melt agglomeration process on agglomerates containing solid dispersions. Int. J. Pharm. 303, 132-142. https://doi.org/10.1016/j.ijpharm.2005.07.012
  137. Vippagunta, S.R., Maul, K.A., Tallavajhala, S., Grant, D.J., 2002. Solid-state characterization of nifedipine solid dispersions. Int. J. Pharm. 236, 111-123. https://doi.org/10.1016/S0378-5173(02)00019-4
  138. Vippagunta, S.R., Wang, Z., Hornung, S., Krill, S.L., 2007. Factors affecting the formation of eutectic solid dispersions and their dissolution behavior. J. Pharm. Sci. 96, 294-304. https://doi.org/10.1002/jps.20754
  139. Walking, W.D., 1994. Povidone. Handbook of Pharmaceutical Excipients. https://doi.org/10.1016/S0378-5173(02)00019-4
  140. Watanabe, T., Ohno, I., Wakiyama, N., Kusai, A., Senna, M., 2002. Stabilization of amorphous indomethacin by co-grinding in a ternary mixture. Int. J. Pharm. 241, 103-111. https://doi.org/10.1016/S0378-5173(02)00196-5
  141. Weuts, I., Kempen, D., Verreck, G., Decorte, A., Heymans, K., Peeters, J., Brewster, M., Van den Mooter, G., 2005. Study of the physicochemical properties and stability of solid dispersions of loperamide and PEG6000 prepared by spray drying. Eur. J. Pharm. Biopharm. 59, 119-126. https://doi.org/10.1016/j.ejpb.2004.05.011
  142. Won, D.H., Kim, M.S., Lee, S., Park, J.S., Hwang, S.J., 2005. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm. 301, 199-208. https://doi.org/10.1016/j.ijpharm.2005.05.017
  143. Yagi, N., Terashima, Y., Kenmotsu, H., Sekikawa, H., Takada, M., 1996. Dissolution behavior of probucol from solid dispersin systems of probucol-polyvinylpyrrolidone. Chem. Pharm. Bull. 44, 241-244. https://doi.org/10.1016/j.ejpb.2004.05.011
  144. Yao, W.W., Bai, T.C., Sun, J.P., Zhu, C.W., Hu, J., Zhang, H.L., 2005. Thermodynamic properties for the system of silybin and poly(ethylene glycol) 6000. Thermochim. Acta. 437, 17-20. https://doi.org/10.1016/j.tca.2005.06.012
  145. Yoshihashi, Y., Iijima, H., Yonemochi, E., Terada, K., 2006. Estimation of physical stability of amorphous solid dispersion using differential scanning calorimetry. J. Therm. Anal Calorim. 85, 689-692. https://doi.org/10.1007/s10973-006-7653-8
  146. Zingone, G., Rubessa, F., 1994. Release of carbamazepine from solid dispersions with polyvinylpyrrolidone/vinylacetate copolymer (PVP/VA). S.T.P. Pharm. Sci. 4, 122-127. https://doi.org/10.1016/j.tca.2005.06.012

Cited by

  1. Preparation, characterization and in vitro dissolution of aceclofenac-loaded PVP solid dispersions prepared by spray drying or rotary evaporation method vol.43, pp.2, 2013, https://doi.org/10.1007/s40005-013-0058-3
  2. RETRACTED ARTICLE: Preparation/characterization of solid dispersions and enhancement of dissolution rate on celecoxib as BCS II class vol.44, pp.5, 2014, https://doi.org/10.1007/s40005-013-0090-3
  3. Improved Dissolution Behavior of Aceclofenac Loadings with Kollidon VA 64 Using Spray Drying and Rotary Evaporation Process vol.39, pp.1, 2015, https://doi.org/10.7317/pk.2015.39.1.6