• Title/Summary/Keyword: water length effect

Search Result 816, Processing Time 0.029 seconds

Effect of CO2 Supply on Lettuce Growth

  • Hyeon-Do Kim;Yeon-Ju Choi;Eun-Young Bae;Jum-Soon Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.355-365
    • /
    • 2024
  • This study was conducted to investigate the effects of CO2 supplement on growth and quality in greenhouse lettuce cultivation. When CO2 was supplied at 1,500 ppm in lettuce cultivation, overall growth parameters such as number of leaves, leaf area, plant length, fresh weight, and dry weight were superior compared to those of the control group. While there was no significant difference in relative growth rate due to CO2 supplement, an increase in leaf area index was observed with CO2 usage. Furthermore, although there was no significant difference in the content of water-soluble vitamins such as Vitamin C, B1, B2, B5, and B6 due to CO2 supplement, the Vitamin B3 content in the CO2 treatment group was 0.5 mg/kg higher than in the control group. Therefore, the use of CO2 in lettuce cultivation resulted in increased yield and promoted growth, enabling early harvesting.

Experimental Study on Characteristics of Steam Condensation in a Sub-cooled Water Pool (과냉각수조에서 증기응축 특성에 관한 실험적 연구)

  • Kim, Hwan-Yeol;Cho, Seok;Song, Chul-Hwa;Chung, Moon-Ki;Choi, Sang-Min
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.298-308
    • /
    • 1999
  • Experimental study on characteristics of direct contact condensation of steam discharged into a sub-cooled water pool has been performed using five different sizes of horizontal nozzle over a wide range of steam mass fluxes and pool temperatures. Steam condensation phenomena have been observed visually and by taking pictures of steam jets using a high speed video camera. Two different steam jet shapes such as ellipsoidal shape and conical shape were typically observed for a stable steam jet, depending on the steam mass flux and pool temperature. The steam jet expansion ratio and the steam jet length as well as the condensation heat transfer coefficients were determined. The effect of steam mass flux, pool temperature, and nozzle diameter on these parameters were also discussed. Empirical correlations for the steam jet lengths and the condensation heat transfer coefficients as a function of steam mass flux and condensation driving potential were established. The axial and radial temperature distributions in steam jet and in surrounding water were measured. The effect of steam mass flux, pool temperature, and nozzle diameter were also discussed. The condensation regime map, which consists of six regimes such as chugging, transient chugging, condensation oscillation, stable condensation, bubble condensation oscillation, and intermittent oscillation condensation, were established. In addition, the dynamic pressures at the pool wall were measured. The close relation of dynamic pressure and steam condensation mode, which is also dependent on steam mass flux and pool temperature, was found.

  • PDF

Effect of Cosurfactant on Phase Equilibrium and Dynamic Behavior in Ternary Systems Containing Nonylphenol Ethoxylate Surfactant, Water and Hydrocarbon Oil (보조계면활성제가 노닐페놀 에톡실레이트 계면활성제, 탄화수소 오일, 물로 이루어진 삼성분계의 상평형 및 동적거동에 미치는 영향)

  • Lim, HeungKyoon;Lee, Seul;Mo, DaHee;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.969-979
    • /
    • 2012
  • In this study, the effects of cosurfactant on phase equilibrium and dynamic behavior were studied in systems containing nonylphenol ethoxylate (NP) surfactant solutions and nonpolar hydrocarbon oils. All the cosurfactants used during this study such as n-pentanol, n-octanol and n-decanol acted as a hydrophobic additive and the hydrophobic effect was found to increase with both increases in chain length and amount of addition of a cosurfactant. Dynamic behavior studies under hydrophilic conditions showed that the solubilization of hydrocarbon oil by NP micellar solution is controlled by an interface-controlled mechanism rather than a diffusion-controlled mechanism. Both spontaneous emulsification of water into oil phase and expansion of oil drop were observed under lipophilic conditions because of diffusion of surfactant and water into oil phase. Under conditions of a three phase region including a middle-phase microemulsion, both rapid solubilization and emulsification of oil into aqueous solutions were found mainly due to the existence of ultralow interfacial tension.

A Study of Vegetation Distribution due to Mixed Seeding on a Slanted, Soiled Roof (흙 지붕 경사면의 혼합종자 파종에 의한 식생분포 연구)

  • Chung, Dong-Yang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.5
    • /
    • pp.110-120
    • /
    • 2009
  • The hipped roof on the research building, which was constructed 51.9m above sea level on a hillock by Korea National University of Education in June 1999, is composed of four inclined planes which are 12m in breadth, 8m in length and have a 30 degree gradient. For the roof vegetation, the yellow earth collected from around the building was laid on top. It was designed to supply the soil on the slope with water for a considerable period by making rainfall pool at the edges. In order to prevent the soil on the slope from being swept away, 31 sorts of grass seeds were imported from Germany and sown in the soil. At the present day, 10 years after the seeds began to sprout and inhabit the settled slope, 30 individual plant species were identified in the period between April 2008 and March 2009. Out of 31 species were seeded on the slanted, soiled roof, only 8 were still alive. It was confirmed that the Artemisia Princeps var, Chrysantheum, Prunella Vulgaris and Lespedeza Cuneata have been the major species inhabiting the east, west, south and north inclined planes respectively. The Phragmites Communis was inhabiting the edge of the roof where the water supply was adequate, while the Dianthus Barbatus was primarily inhabiting the south-east side of the roof. As a whole, 26 identifiable plants and 4 unidentified plants were observed on the inclined planes of the hipped roof. In consideration of the plant distribution on the slope, it was confirmed that the selection of seeds may have had an effect on the slope vegetation. As for the yellow earth laid on the roof, it was discovered that about 2~3cm thickness around the ridge was swept away, but the rest of the slope was in relatively good condition. Accordingly, it has been proven that vegetations can be applied to hipped roofs by using ordinary plants without any special structural measures.

Derivation of Storage Coefficient and Concentration Time for Derivation of Lateral Inflow Hydrograph (측방 유입 수문곡선 유도를 위한 저류상수 및 집중시간의 유도)

  • Yoo, Chul-Sang;Kim, Ha-Young;Park, Chang-Yeol
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.243-252
    • /
    • 2012
  • The objective of this study is to analyze lateral inflow hydrologically. The IUH of lateral inflow is sum of the impulse responses of total cells in basin. This IUH bases on the Muskingum channel routing method, which hydrologically re-analysed to represent it as a linear combination of the linear channel model considering only the translation and the linear reservoir model considering only the storage effect. Rectangular and triangular basins were used as imaginary basins and IUH of each basin were derived. The derived IUH have different characteristics with respect to basin's shape. The storage coefficient of lateral inflow was also derived mathematically using general definitions of concentration time and storage coefficient. As a result, the storage coefficient of lateral inflow could be calculated easily using basin's width, length and hydrological characteristics of channel.

Development of a Modified Standardized Precipitation Index by Considering Effects of the Dry Period and Rainfall (무강수일수와 강우효과를 고려한 개선된 표준강수지수 개발)

  • Lee, Jun-Won;Kim, Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.409-418
    • /
    • 2012
  • A modified standardized precipitation index was developed by considering the length of dry period and surface run-off effect. The official reports and newspapers on drought from 1973 to 2009 were quantified to evaluate drought indices. The developed index was evaluated using the receiver operating characteristic analysis. In order to suggest improved drought index, we cut the precipitation amount that may do not contribute the mitigation of drought and weight dry period by considering cumulative distribution, decile distribution of dry periods. Drought detection capability of the suggested index has improved by weighting of dry period effects and considering precipitation amounts contributing drought mitigation.

Photoactivities of Nanostructured α-Fe2O3 Anodes Prepared by Pulsed Electrodeposition

  • Lee, Mi Gyoung;Jang, Ho Won
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.400-405
    • /
    • 2016
  • Ferric oxide (${\alpha}-Fe_2O_3$, hematite) is an n-type semiconductor; due to its narrow band gap ($E_g=2.1eV$), it is a highly attractive and desirable material for use in solar hydrogenation by water oxidation. However, the actual conversion efficiency achieved with $Fe_2O_3$ is considerably lower than the theoretical values because the considerably short diffusion length (2-4 nm) of holes in $Fe_2O_3$ induces excessive charge recombination and low absorption. This is a significant hurdle that must be overcome in order to obtain high solar-to-hydrogen conversion efficiency. In consideration of this, it is thought that elemental doping, which may make it possible to enhance the charge transfer at the interface, will have a marked effect in terms of improving the photoactivities of ${\alpha}-Fe_2O_3$ photoanodes. Herein, we report on the synthesis by pulsed electrodeposition of ${\alpha}-Fe_2O_3$-based anodes; we also report on the resulting photoelectrochemical (PEC) properties. We attempted Ti-doping to enhance the PEC properties of ${\alpha}-Fe_2O_3$ anodes. It is revealed that the photocurrent density of a bare ${\alpha}-Fe_2O_3$ anode can be dramatically changed by controlling the condition of the electrodeposition and the concentration of $TiCl_3$. Under optimum conditions, a modified ${\alpha}-Fe_2O_3$ anode exhibits a maximum photocurrent density of $0.4mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE) under 1.5 G simulated sunlight illumination; this photocurrent density value is about 3 times greater than that of unmodified ${\alpha}-Fe_2O_3$ anodes.

The Effect of Tread-Pressure on the Growth of Kummerowia striata (답압이 매듭풀(Kummerowia Striata)의 생장에 미치는 영향)

  • Kim, In-Teak
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 1994
  • To investigate the causes of distribution of Kummerowia striata (Thunb.) Schindl. mostly restricted on the roadside and reclaimed land, plant growth was analyzed under different of tread-pressures: $P_1$(10 times/day, $16.34Kg/cm^2$), $P_2$(20 times/day, $31.52 Kg/cm^2$), $P_3$(30 times/day, $40.79 kg/cm^2$) and the control $P_c$(0 times/day, $3.73 Kg/cm^2$). The matter production in the $P_1$decreased compared with that in the $P_c$, and those in the $P_2$and $P_3$ continuously decreased so that its length growth gradually decreased and, in particular, the growth of leaves and nodule was suppressed. The number of leaves and roots tended to increase in the $P_2$and $P_3$. The water contents of roots following the increase of tread-pressure increased continuously. Following the increase of tread-pressure, T/R ratio and C/F ratio tended to increase. Kummerowia striata showed the highest growth in the $P_c$ and showed 26% relative growth in the $P_1$compared with that in the $P_c$. This plant showed 8% relative growth in the $P_3$, which is excess to the tread-pressure $21Kg/cm^2$, the limit of growth in the plant. Because this plant grew continuously in the P$_3$, the tread-pressure is regarded as an important factor affecting the roadside distribution of this plant.

  • PDF

The Study of New Model for Stress-Induced Gastric Ulcer in Rat. (랫드에서 스트레스에 의해 유발된 위궤양 모델에 관한 연구)

  • 임윤규;이종권;이영순
    • Journal of Food Hygiene and Safety
    • /
    • v.5 no.4
    • /
    • pp.187-196
    • /
    • 1990
  • This study was carried out to develop new model for gastric ulcer and to investigate some factor which effect it. Rats were immersed for 8 hours. Ulcer index was measured from total length of occured ulcer. Ulcer index (UI) of restraint and immersion group was higher significantly than that of only restraint group (p<0.001) and ulcer was occurred within only glandular stomach. UI of low water temperature group was higher significantly than that of high water temperature group (p

  • PDF

Internal Short-circuiting Estimation in Clearwell : Part A. Improving T10/T Using Intra Basin and Diffuser Wall by Applying ISEM to Field (정수지 내부 단락류 발생 평가 : Part A. 정수장 내부 단락류 분석을 통한 장폭비와 형태가 T10/T 값에 미치는 영향 연구)

  • Shin, Eunher;Lee, Seungjae;Kim, Sunghoon;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.105-112
    • /
    • 2008
  • Disinfection is a basic and effective microorganism inactivation method and historically contributed a decrease in waterborne diseases. To guarantee the disinfection ability, improving T in CT value is important. Many indexes are used to estimate the hydraulic efficiency, however, these are black-box analysis. Therefore it is need to develope new estimation method. In this study, internal short-circuiting estimation method (ISEM) is developed using CFD and we inquire into the factor which causes increase of $T_{10}/T$ value as LW ratio increases. And the effect of shape on the relation of LW ratio and $T_{10}/T$ is analyzed. As LW ratio increases, internal short-circuiting index (ISI) of influent and effluent zone is rapidly reduced and recirculation and dead zone are reduced in channel zone. Therefore, as the $T_{10}/T$ value converges maximum value, ISI curve is changed from "V" shape to "U" shape and hydraulic efficiency is improved especially in downstream portion of clearwell. The less the shape ratio(width/length of clearwell) is the less the $T_{10}/T$ value is at a same LW ratio because the portion of turning zone increases as shape ration decreases, therefore more boundary separation is generated.