References
- X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, "Engineering Heterogeneous Semiconductors for Solar Water Splitting," J. Mater. Chem. A, 3 [6] 2485-534 (2015). https://doi.org/10.1039/C4TA04461D
- J. Goldemberg, "Ethanol for a Sustainable Energy Future," Science, 315 [5813] 808-10 (2007). https://doi.org/10.1126/science.1137013
- M. Gratzel, "Photoelectrochemical Cells," Nature, 15 [414] 338-44 (2001).
- Z. Chen, H. N. Din, and E. Miller, Photoelectrochemical Solar Water Splitting; Vol. 1, pp.1-113, Springer, New York, 2013.
- M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, "Solar Water Splitting Cells," Chem. Rev., 110 [11] 6446-73 (2010). https://doi.org/10.1021/cr1002326
- M. S. Prevot and K. Sivula, "Photoelectrochemical Tandem Cells for Solar Water Splitting," J. Phys. Chem. C, 117 [35] 17879-93 (2013). https://doi.org/10.1021/jp405291g
-
D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, "A Wafer-Scale Antireflective Protection Layer of Solution-Processed
$TiO_2$ Nanorods for High Performance Silicon-based Water Splitting Photocathodes," J. Mater. Chem. A, 4 [24] 9477-85 (2016). https://doi.org/10.1039/C6TA02987F - K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C. H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, "Wafer-Scale Transferable Molybdenum Disulphide Thin-Film Catalyst for Photoelectrochemical Hydrogen Production," 9 [7] 2240-48 (2016). https://doi.org/10.1039/C6EE00144K
- D. M. Andoshe, J.-M. Jeon, S. Y. Kim, and H. W. Jang, "Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting," Electron. Mater. Lett., 11 [3] 323-35 (2015). https://doi.org/10.1007/s13391-015-4402-9
-
R. L. Spray and K.-S. Choi, "Photoactivity of Transparent Nanocrystalline
$Fe_2O_3$ Electrodes Prepared via Anodic Electrodeposition," Chem. Mater., 21 [15] 3701-9 (2009). https://doi.org/10.1021/cm803099k -
G. Ranman and O.-S. Joo, "Photoelectrochemical Water Splitting at Nanostructured
${\alpha}-Fe_2O_3$ Electrodes," Int. J. Hydrogen Energy, 37 [19] 13989-97 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.037 -
L. Wang, C.-Y. Lee, and P. Schmuki, "Solar Water Splitting: Preserving the Beneficial Small Feature Size in Porous
${\alpha}-Fe_2O_3$ Photoelectrodes during Annealing," J. Mater. Chem. A, 1 [2] 212-15 (2013). https://doi.org/10.1039/C2TA00431C -
L. Wang, C.-Y. Lee, and P. Schmuki, "Influence of Annealing Temperature on Photoelectrochemical Water Splitting of
${\alpha}-Fe_2O_3$ Films Prepared by Anodic Deposition," Electrochim. Acta, 91 [28] 307-13 (2013). https://doi.org/10.1016/j.electacta.2012.12.101 -
K. Sivula, F. L. Formal, and M. Gratzel, "Solar Water Splitting: Progress Using Hematite (
${\alpha}-Fe_2O_3$ ) Photoelectrodes," ChemSusChem, 4 [4] 432-49 (2011). https://doi.org/10.1002/cssc.201000416 - A. J. Bard and L. R. Faulkne, Electrochemical Methods; Vol. 2, pp.226-304, John Wiley & SONS, New York, 2001.
- D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K.-S. Choi, "Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting," Chem. Rev., 115 [23] 12839-87 (2015). https://doi.org/10.1021/acs.chemrev.5b00498
- M. S. Chandrasekar and M. Pushpavanam, "Pulse and Pulse Reverse Plating-Conceptual, Advantages and Applications," Electrochim. Acta, 53 [8] 3313-22 (2008). https://doi.org/10.1016/j.electacta.2007.11.054
- N. S. Qua, D. Zhua, and K. C. Chan, "Pulse Electrodeposition of Nanocrystalline Nickel Using Ultra Narrow Pulse Width and High Peak Current Density," Surf. Coat. Technol., 168 [2-3] 123-28 (2003). https://doi.org/10.1016/S0257-8972(03)00014-8
- D. Gopi, J. Indira, and L. Kavitha, "A Comparative Study on the Direct and Pulsed Current Electrodeposition of Hydroxyapatite Coatings on Surgical Grade Stainless Steel," Surf. Coat. Technol., 206 [11-12] 2859-69 (2012). https://doi.org/10.1016/j.surfcoat.2011.12.011
- S. Shen, "Physical and Photoelectrochemical Characterization of Ti-doped Hematite Photoanodes Prepared by Solution Growth," J. Mater. Chem. A, 1 [46] 14498-506 (2013). https://doi.org/10.1039/c3ta13453a
- S. Li, P. Zhang, X. Song, and L. Gao, "Ultrathin Ti-doped Hematite Photoanode by Pyrolysis of Ferrocene," Int. J. Hydrogen Energy, 39 [27] 14596-603 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.110
- R. Franking, L. Li, M. A. Lukowski, F. Meng, Y. Tan, R. J. Hamers, and S. Jin, "Facile Post-Growth Doping of Nanostructured Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation," Energy Environ. Sci., 6 [2] 500-12 (2013). https://doi.org/10.1039/C2EE23837C
- T. Y. Yang, H. Y. Kang, U. Sim, Y. J. Lee, J. H. Lee, B. Koo, K. T. Nam, and Y. C. Joo, "A New Hematite Photoanode Doping Strategy for Solar Water Splitting: Oxygen Vacancy Generation," Phys. Chem. Chem. Phys., 15 [6] 2117-24 (2013). https://doi.org/10.1039/c2cp44352j
Cited by
- Gold nanoislands chip for laser desorption/ionization (LDI) mass spectrometry vol.11, pp.3, 2017, https://doi.org/10.1007/s13206-017-1310-0
- Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.08
- Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.11