DOI QR코드

DOI QR Code

Photoactivities of Nanostructured α-Fe2O3 Anodes Prepared by Pulsed Electrodeposition

  • Lee, Mi Gyoung (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University) ;
  • Jang, Ho Won (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University)
  • Received : 2016.07.01
  • Accepted : 2016.07.18
  • Published : 2016.07.31

Abstract

Ferric oxide (${\alpha}-Fe_2O_3$, hematite) is an n-type semiconductor; due to its narrow band gap ($E_g=2.1eV$), it is a highly attractive and desirable material for use in solar hydrogenation by water oxidation. However, the actual conversion efficiency achieved with $Fe_2O_3$ is considerably lower than the theoretical values because the considerably short diffusion length (2-4 nm) of holes in $Fe_2O_3$ induces excessive charge recombination and low absorption. This is a significant hurdle that must be overcome in order to obtain high solar-to-hydrogen conversion efficiency. In consideration of this, it is thought that elemental doping, which may make it possible to enhance the charge transfer at the interface, will have a marked effect in terms of improving the photoactivities of ${\alpha}-Fe_2O_3$ photoanodes. Herein, we report on the synthesis by pulsed electrodeposition of ${\alpha}-Fe_2O_3$-based anodes; we also report on the resulting photoelectrochemical (PEC) properties. We attempted Ti-doping to enhance the PEC properties of ${\alpha}-Fe_2O_3$ anodes. It is revealed that the photocurrent density of a bare ${\alpha}-Fe_2O_3$ anode can be dramatically changed by controlling the condition of the electrodeposition and the concentration of $TiCl_3$. Under optimum conditions, a modified ${\alpha}-Fe_2O_3$ anode exhibits a maximum photocurrent density of $0.4mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE) under 1.5 G simulated sunlight illumination; this photocurrent density value is about 3 times greater than that of unmodified ${\alpha}-Fe_2O_3$ anodes.

Keywords

References

  1. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, "Engineering Heterogeneous Semiconductors for Solar Water Splitting," J. Mater. Chem. A, 3 [6] 2485-534 (2015). https://doi.org/10.1039/C4TA04461D
  2. J. Goldemberg, "Ethanol for a Sustainable Energy Future," Science, 315 [5813] 808-10 (2007). https://doi.org/10.1126/science.1137013
  3. M. Gratzel, "Photoelectrochemical Cells," Nature, 15 [414] 338-44 (2001).
  4. Z. Chen, H. N. Din, and E. Miller, Photoelectrochemical Solar Water Splitting; Vol. 1, pp.1-113, Springer, New York, 2013.
  5. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, "Solar Water Splitting Cells," Chem. Rev., 110 [11] 6446-73 (2010). https://doi.org/10.1021/cr1002326
  6. M. S. Prevot and K. Sivula, "Photoelectrochemical Tandem Cells for Solar Water Splitting," J. Phys. Chem. C, 117 [35] 17879-93 (2013). https://doi.org/10.1021/jp405291g
  7. D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, "A Wafer-Scale Antireflective Protection Layer of Solution-Processed $TiO_2$ Nanorods for High Performance Silicon-based Water Splitting Photocathodes," J. Mater. Chem. A, 4 [24] 9477-85 (2016). https://doi.org/10.1039/C6TA02987F
  8. K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C. H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, "Wafer-Scale Transferable Molybdenum Disulphide Thin-Film Catalyst for Photoelectrochemical Hydrogen Production," 9 [7] 2240-48 (2016). https://doi.org/10.1039/C6EE00144K
  9. D. M. Andoshe, J.-M. Jeon, S. Y. Kim, and H. W. Jang, "Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting," Electron. Mater. Lett., 11 [3] 323-35 (2015). https://doi.org/10.1007/s13391-015-4402-9
  10. R. L. Spray and K.-S. Choi, "Photoactivity of Transparent Nanocrystalline $Fe_2O_3$ Electrodes Prepared via Anodic Electrodeposition," Chem. Mater., 21 [15] 3701-9 (2009). https://doi.org/10.1021/cm803099k
  11. G. Ranman and O.-S. Joo, "Photoelectrochemical Water Splitting at Nanostructured ${\alpha}-Fe_2O_3$ Electrodes," Int. J. Hydrogen Energy, 37 [19] 13989-97 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.037
  12. L. Wang, C.-Y. Lee, and P. Schmuki, "Solar Water Splitting: Preserving the Beneficial Small Feature Size in Porous ${\alpha}-Fe_2O_3$ Photoelectrodes during Annealing," J. Mater. Chem. A, 1 [2] 212-15 (2013). https://doi.org/10.1039/C2TA00431C
  13. L. Wang, C.-Y. Lee, and P. Schmuki, "Influence of Annealing Temperature on Photoelectrochemical Water Splitting of ${\alpha}-Fe_2O_3$ Films Prepared by Anodic Deposition," Electrochim. Acta, 91 [28] 307-13 (2013). https://doi.org/10.1016/j.electacta.2012.12.101
  14. K. Sivula, F. L. Formal, and M. Gratzel, "Solar Water Splitting: Progress Using Hematite (${\alpha}-Fe_2O_3$) Photoelectrodes," ChemSusChem, 4 [4] 432-49 (2011). https://doi.org/10.1002/cssc.201000416
  15. A. J. Bard and L. R. Faulkne, Electrochemical Methods; Vol. 2, pp.226-304, John Wiley & SONS, New York, 2001.
  16. D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K.-S. Choi, "Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting," Chem. Rev., 115 [23] 12839-87 (2015). https://doi.org/10.1021/acs.chemrev.5b00498
  17. M. S. Chandrasekar and M. Pushpavanam, "Pulse and Pulse Reverse Plating-Conceptual, Advantages and Applications," Electrochim. Acta, 53 [8] 3313-22 (2008). https://doi.org/10.1016/j.electacta.2007.11.054
  18. N. S. Qua, D. Zhua, and K. C. Chan, "Pulse Electrodeposition of Nanocrystalline Nickel Using Ultra Narrow Pulse Width and High Peak Current Density," Surf. Coat. Technol., 168 [2-3] 123-28 (2003). https://doi.org/10.1016/S0257-8972(03)00014-8
  19. D. Gopi, J. Indira, and L. Kavitha, "A Comparative Study on the Direct and Pulsed Current Electrodeposition of Hydroxyapatite Coatings on Surgical Grade Stainless Steel," Surf. Coat. Technol., 206 [11-12] 2859-69 (2012). https://doi.org/10.1016/j.surfcoat.2011.12.011
  20. S. Shen, "Physical and Photoelectrochemical Characterization of Ti-doped Hematite Photoanodes Prepared by Solution Growth," J. Mater. Chem. A, 1 [46] 14498-506 (2013). https://doi.org/10.1039/c3ta13453a
  21. S. Li, P. Zhang, X. Song, and L. Gao, "Ultrathin Ti-doped Hematite Photoanode by Pyrolysis of Ferrocene," Int. J. Hydrogen Energy, 39 [27] 14596-603 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.110
  22. R. Franking, L. Li, M. A. Lukowski, F. Meng, Y. Tan, R. J. Hamers, and S. Jin, "Facile Post-Growth Doping of Nanostructured Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation," Energy Environ. Sci., 6 [2] 500-12 (2013). https://doi.org/10.1039/C2EE23837C
  23. T. Y. Yang, H. Y. Kang, U. Sim, Y. J. Lee, J. H. Lee, B. Koo, K. T. Nam, and Y. C. Joo, "A New Hematite Photoanode Doping Strategy for Solar Water Splitting: Oxygen Vacancy Generation," Phys. Chem. Chem. Phys., 15 [6] 2117-24 (2013). https://doi.org/10.1039/c2cp44352j

Cited by

  1. Gold nanoislands chip for laser desorption/ionization (LDI) mass spectrometry vol.11, pp.3, 2017, https://doi.org/10.1007/s13206-017-1310-0
  2. Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.08
  3. Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.11