• Title/Summary/Keyword: water inflow

Search Result 1,481, Processing Time 0.029 seconds

Forecast of the Daily Inflow with Artificial Neural Network using Wavelet Transform at Chungju Dam (웨이블렛 변환을 적용한 인공신경망에 의한 충주댐 일유입량 예측)

  • Ryu, Yongjun;Shin, Ju-Young;Nam, Woosung;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1321-1330
    • /
    • 2012
  • In this study, the daily inflow at the basin of Chungju dam is predicted using wavelet-artificial neural network for nonlinear model. Time series generally consists of a linear combination of trend, periodicity and stochastic component. However, when framing time series model through these data, trend and periodicity component have to be removed. Wavelet transform which is denoising technique is applied to remove nonlinear dynamic noise such as trend and periodicity included in hydrometeorological data and simple noise that arises in the measurement process. The wavelet-artificial neural network (WANN) using data applied wavelet transform as input variable and the artificial neural network (ANN) using only raw data are compared. As a results, coefficient of determination and the slope through linear regression show that WANN is higher than ANN by 0.031 and 0.0115 respectively. And RMSE and RRMSE of WANN are smaller than those of ANN by 37.388 and 0.099 respectively. Therefore, WANN model applied in this study shows more accurate results than ANN and application of denoising technique through wavelet transforms is expected that more accurate predictions than the use of raw data with noise.

Analysis of Intercepted Flow according to Change of Flow Width in Gutter (도로 흐름폭 변화에 따른 차집유량 분석)

  • Joo, Dong Won;Kim, Jung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • In dense cities, which are covered by many impermeable areas, rainwater flows quickly along the roads and collects in certain areas. The surface runoff that fails to get intercepted by the roadside rain gutters results in a wider flow of water along the sides, which in turn increases the amount of water on the road and causes traffic congestion as well as accidents due to slippage. Based on these issues, this study was carried out in order to propose an intercepted flow calculation formula. To this end, the maximum longitudinal slopes of arterial roads and expressways were reflected to depict a road condition of 2~10 %, while a general traverse slope of 2 % was selected for the traverse slope on the side. As for the road lane condition, two, three, and four lanes were chosen for the area from the centerline to the sidewalk. As for the experimental flow rate, the rainwater runoffs at the actual design frequency of 5, 10, 20, and 30 years for road conditions were converted into experimental flow rates, and as a result, flow rates ranging from 1.36 l/s to 3.96 l/s were divided into ten flow rates for a hydraulic experiment. Also, an equation taking into consideration the inflow velocity and flow width along the roadsides was proposed. The results of the experiment showed an increase in flow width and a decrease in interception rate. Also, the inflow velocity at a traverse slope of 2 % was measured, while increasing the longitudinal slope. Accordingly, an equation for calculating the flow intercepted by rain gutters at a flow width reflecting the longitudinal slope of the road and rainwater runoff, according to the design frequency, was derived by performing a regression analysis using IBM SPSS Statistics 24. It is deemed that the equation derived in this study will be useful in designing rain gutters for roads.

An experimental study on the influence of undular bore on the hydraulic stability at Shinwol rainwater storage and drainage system (불규칙 단파가 신월저류배수시설의 수리적 안정성에 미치는 영향에 대한 실험 연구)

  • Oh, Jun Oh
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.313-323
    • /
    • 2019
  • Deep Tunnel system is a large-scale urban flood control facility installed underground in order to reinforce the lack of drainage systems in developed cities. In a structure like a deep tunnel system, the undular bore generated in the downstream causes a problem in the hydraulic stability of the tunnel. In this study, to investigate the influence of the undular bore on the hydraulic stability at the "Shinwol rainwater storage and drainage system", under construction for the first time in the country, a hydraulic model experiment was conducted on various flooding inflow scenarios. As a result of the hydraulic model experiment carried out in this study, the undular bore generated downstream is trapped in the pipe while moving to upstream, pushes the compressed air. It is judged that overflow occurred by choking the vertical drop shaft in the process when this compressed air is being exhaust through the upstream vertical drop shaft and blocking flood inflow. In addition, the analysis of velocity of undular bore shows that the undular bore transfers energy, and at this time, the pressure rose in the pipe and the velocity increment occurred of the undular bore. Further studies are needed to predict the size and velocity of undular bore, which plays an important role in the hydraulic stability of the tunnel in the deep tunnel system.

Comparative analysis of inundation flow patterns and flood risk assessment methods within subway stations (지하철 역사 내 침수 흐름 분석 및 침수 위험도 평가 방법 비교)

  • Shin, Jaehyun;Kim, Minjeong;Cho, Inhwan;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.667-678
    • /
    • 2023
  • In this study, quasi-3D inundation flow simulations were conducted for a simplified subway station configuration. The effects of variations in rainwater inflow locations and discharge were investigated, analyzing the resulting inundation flow patterns and flood risk. The inundation simulation results calculated the incipient velocities for slipping and toppling accidents to assess pedestrian safety. The results indicated that velocities exceeding the incipient velocity for slipping accidents mainly occurred on the flooded staircase. Meanwhile, velocities surpassing the incipient toppling accidents were observed around the staircase and the corridor near the staircase leading to B2F. This observation is consistent with the results from the specific force distribution analysis. To provide detailed flood risk assessments, the Flood Hazard Degree (FD) was applied with four levels of criteria, along with the Flood Intensity Factor (FIF). The results demonstrated that FD identified a broader area at risk of flood-induced consequences compared to FIF. When comparing the different inundation risk assessment methods, the specific force method tended to overestimate the risk area, whereas FIF tended to underestimate it. Furthermore, among all assessment methods, the influence of rainwater discharge was found to have a more dominant effect on flood risk assessment compared to the number of rainwater inflow locations. Additionally, the direction of inundation flow influenced the assessed risk, with collision-induced flow patterns leading to higher flood risk than those with identical flow directions.

Application of the weather radar-based quantitative precipitation estimations for flood runoff simulation in a dam watershed (기상레이더 강수량 추정 값의 댐 유역 홍수 유출모의 적용)

  • Cho, Yonghyun;Woo, Sumin;Noh, Joonwoo;Lee, Eulrae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.155-166
    • /
    • 2020
  • In this study, we applied the Radar-AWS Rainrates (RAR), weather radar-based quantitative precipitation estimations (QPEs), to the Yongdam study watershed in order to perform the flood runoff simulation and calculate the inflow of the dam during flood events using hydrologic model. Since the Yongdam study watershed is a representative area of the mountainous terrain in South Korea and has a relatively large number of monitoring stations (water level/flow) and data compared to other dam watershed, an accurate analysis of the time and space variability of radar rainfall in the mountainous dam watershed can be examined in the flood modeling. HEC-HMS, which is a relatively simple model for adopting spatially distributed rainfall, was applied to the hydrological simulations using HEC-GeoHMS and ModClark method with a total of eight independent flood events that occurred during the last five years (2014 to 2018). In addition, two NCL and Python script programs are developed to process the radar-based precipitation data for the use of hydrological modeling. The results demonstrate that the RAR QPEs shows rather underestimate trends in larger values for validation against gauged observations (R2 0.86), but is an adequate input to apply flood runoff simulation efficiently for a dam watershed, showing relatively good model performance (ENS 0.86, R2 0.87, and PBIAS 7.49%) with less requirements for the calibration of transform and routing parameters than the spatially averaged model simulations in HEC-HMS.

Influence of Groundwater on the Hydrogeochemistry and the Origin of Oseepchun in Dogye Area, Korea (도계지역 오십천에서의 지하수 영향분석 - 수리지화학적 특성과 기원)

  • Hwang, Jeong Hwan;Song, Min Ho;Cho, Hea Ly;Woo, Nam C
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.167-179
    • /
    • 2016
  • Water quality of Oseepchun, Dogye area, was investigated quantitatively for its origin and hydrogeochemistry in relation to the influence of groundwater. Groundwater appears to be the principal source of Oseepchun from the water-quality monitoring data including redox potentials, composition of dissolved ions and their correlations, hydrogen and oxygen stable isotopic ratios, and the distribution and occurrence of contaminants. Water-quality type of the surface water was grouped by the water-rock interactions as $Ca-HCO_3$ type originated from carbonated bed-rocks in the Joseon Supergroup, (Ca, Mg)-$SO_4$ type related with dissolution of surfide minerals in coal beds of Pyeongan Supergroup, and (Ca, Mg)-($HCO_3$, $SO_4$) type of the mixed one. Locally water pollution occurs by high $SO_4$ from mine drainage and $NO_3$ from waste-treatment facility. Intensive precipitation in summer has no effect on the water type of Oseepchun, but increases the inflow of nitrate and chloride originated from land surface. Results of this study direct that groundwater-surface water interaction is intimate, and thus surface-water resource management should begin with groundwater characterization.

Effect and uncertainty analysis according to input components and their applicable probability distributions of the Modified Surface Water Supply Index (Modified Surface Water Supply Index의 입력인자와 적용 확률분포에 따른 영향과 불확실성 분석)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Oh, Ji Hwan;Jo, Joon Won
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.475-488
    • /
    • 2017
  • To simulate accurate drought, a drought index is needed to reflect the hydrometeorological phenomenon. Several studies have been conducted in Korea using the Modified Surface Water Supply Index (MSWSI) to simulate hydrological drought. This study analyzed the limitations of MSWSI and quantified the uncertainties of MSWSI. The influence of hydrometeorological components selected as the MSWSI components was analyzed. Although the previous MSWSI dealt with only one observation for each input component such as streamflow, ground water level, precipitation, and dam inflow, this study included dam storage level and dam release as suitable characteristics of the sub-basins, and used the areal-average precipitation obtained from several observations. From the MSWSI simulations of 2001 and 2006 drought events, MSWSI of this study successfully simulated drought because MSWSI of this study followed the trend of observing the hydrometeorological data and then the accuracy of the drought simulation results was affected by the selection of the input component on the MSWSI. The influence of the selection of the probability distributions to input components on the MSWSI was analyzed, including various criteria: the Gumbel and Generalized Extreme Value (GEV) distributions for precipitation data; normal and Gumbel distributions for streamflow data; 2-parameter log-normal and Gumbel distributions for dam inflow, storage level, and release discharge data; and 3-parameter log-normal distribution for groundwater. Then, the maximum 36 MSWSIs were calculated for each sub-basin, and the ranges of MSWSI differed significantly according to the selection of probability distributions. Therefore, it was confirmed that the MSWSI results may differ depending on the probability distribution. The uncertainty occurred due to the selection of MSWSI input components and the probability distributions were quantified using the maximum entropy. The uncertainty thus increased as the number of input components increased and the uncertainty of MSWSI also increased with the application of probability distributions of input components during the flood season.

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

Response of Millet and Sorghum to Water Stress in Converted Poorly Drained Paddy Soil

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Oh, In-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.409-416
    • /
    • 2013
  • Millet and sorghum are major dryland cereal crops, however their growth and productivity is limited by soil water stress with varying intensity. The major objective of this study was to evaluate water stress of millet and sorghum yield under drainage classes of poorly drained soil and to test the effect of the installed pipe drainage in poorly drained paddy soil to minimize crop stress. The research was carried out in poorly drained paddy fields located at alluvial slopping area resulting in non-uniform water content distribution by the inflow of ground water from the upper part of the field. Stress Day Index (SDI) was determined from a stress day factor (SD) and a crop susceptibility factor (CS). SD is a degree of measurement by calculating the daily sum of excess water in the profile above 30cm soil depth ($SEW_{30}$). CS depends on a given excess water on crop stage. The results showed that sum of excess water day ($SWD_{30}$) used to represent the moisture stress index was lower on somewhat poorly drained soil compared with poorly drained soil on 117 days. CS values for sorghum were 57% on $3^{rd}$ leaf stage, 44% on $5^{th}$ leaf stage, 37% on panicle initiation, 23% on boot stage, and 16% on soft dough stage. For proso millet CS values were 84% on $3^{rd}$ leaf stage, 70% on $5^{th}$ leaf Stage, 65% on panicle initiation, 53% on boot stage, and 28% on soft dough stage. And for foxtail millet the values were 73% on $3^{rd}$ leaf stage, 61% on $5^{th}$ leaf stage, 50% on panicle initiation, 29% on boot stage, and 15% on soft dough stage. SDI of sorghum and millet was more susceptible to excess soil water during panicle initation stage more poorly drained soil than somewhat poorly drained soil. Grain yield was reduced especially in proso millet and Foxtail millet compared to Sorghum.

The Analysis of Water and Soil Environment at Farm Pond Depression (농지연못습지의 수질 및 토양환경 분석)

  • Son, Jin-Kwan;Kang, Bang-Hun;Kim, Nam-Choon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.46-62
    • /
    • 2010
  • This study was conducted to understand the water and soil properties to propose the promotion of vegetation environment at farm pond depression. We selected 8 palustrine wetlands from agricultural area after consideration of human interference, surround land use, and size of area. Water quality analysis showed that the average SS, T-N, T-P were over the limit of agricultural water quality standard level at some sites. The cause for deterioration of water quality is supposed by the long-term stagnation of water in palustrine wetland. The recommended measures to improve water quality are as follows; improving water circulation by connecting with nearby natural water, preventing oxygen depletion by dredging deposit, lowering down T-N and T-P by removing autumn plants, preventing inflow of phosphorus in fertilizer ingredients which is the main cause for high T-P. The soil contamination of the surveyed area was about the same level of average heavy metal contents in soils from 2,010 paddy fields in Korea, which was much lower than soil contamination standards. As for soil texture, sand content was 40~90% and clay content was less than 20%. The content of silt and clay in soil from community of floating-leaved:submerged hydrophytes and community of emergent hydrophytes was higher that of soil from community of hygrophytes, and the content of sand in soil from community of hygrophytes was 10% higher than underwater soil. In terms of bulk density, the average was 0.24~0.96g/$cm^3$, which was quite low, because of high content of peat and organic matter in soil of the surveyed area. As for the average content of organic matter, community of floating-leaved:submerged hydrophytes was 18.25g/kg, community of emergent hydrophytes was 16.88g/kg, and community of hydrophytes was 25.63g/kg. The range of content of T-N in soil of community of floating-leaved;submerged hydrophytes was 0.022~0.307%, and that of community of emergent hydrophytes was 0.029~0.681% and that of community of hydrophytes was 0.088~0.325%. Apart from three sites in the surveyed area, most parts were over the standards or below the standard. After this study, we will conduct and discuss the relationship between vegetation characteristics and environments, which will be used of the best practical management and restoration of wetland.