DOI QR코드

DOI QR Code

Influence of Groundwater on the Hydrogeochemistry and the Origin of Oseepchun in Dogye Area, Korea

도계지역 오십천에서의 지하수 영향분석 - 수리지화학적 특성과 기원

  • Hwang, Jeong Hwan (Department of Earth System Sciences, Yonsei University) ;
  • Song, Min Ho (Department of Earth System Sciences, Yonsei University) ;
  • Cho, Hea Ly (Department of Earth System Sciences, Yonsei University) ;
  • Woo, Nam C (Department of Earth System Sciences, Yonsei University)
  • 황정환 (연세대학교 지구시스템과학과) ;
  • 송민호 (연세대학교 지구시스템과학과) ;
  • 조해리 (연세대학교 지구시스템과학과) ;
  • 우남칠 (연세대학교 지구시스템과학과)
  • Received : 2016.04.15
  • Accepted : 2016.06.22
  • Published : 2016.06.28

Abstract

Water quality of Oseepchun, Dogye area, was investigated quantitatively for its origin and hydrogeochemistry in relation to the influence of groundwater. Groundwater appears to be the principal source of Oseepchun from the water-quality monitoring data including redox potentials, composition of dissolved ions and their correlations, hydrogen and oxygen stable isotopic ratios, and the distribution and occurrence of contaminants. Water-quality type of the surface water was grouped by the water-rock interactions as $Ca-HCO_3$ type originated from carbonated bed-rocks in the Joseon Supergroup, (Ca, Mg)-$SO_4$ type related with dissolution of surfide minerals in coal beds of Pyeongan Supergroup, and (Ca, Mg)-($HCO_3$, $SO_4$) type of the mixed one. Locally water pollution occurs by high $SO_4$ from mine drainage and $NO_3$ from waste-treatment facility. Intensive precipitation in summer has no effect on the water type of Oseepchun, but increases the inflow of nitrate and chloride originated from land surface. Results of this study direct that groundwater-surface water interaction is intimate, and thus surface-water resource management should begin with groundwater characterization.

이 연구에서는 강원도 도계지역의 오십천과 주변의 지류를 대상으로 하천수의 수리지화학적 특성을 규명하여 지표 수질에 대한 지하수의 영향을 정량적으로 밝히고, 이를 근거로 체계적인 수자원 관리를 위한 기본정보를 제공하고자 하였다. 오십천 하천수의 수질모니터링 결과, 산화환원전위, 용존 이온성분의 분포와 성분간의 상관성, 산소-수소 동위원소비, 오염물질의 분포와 발생 등은 오십천의 가장 중요한 공급원이 지하수임을 지시한다. 하천수의 수질유형은 기반암의 지질학적 특성에 따른 지하수의 물-암석 반응에 의해 결정되며, 조선누층군의 탄산염 기반암에 기원하는 $Ca-HCO_3$ 유형, 평안누층군 내 탄층에 수반되는 황화광물의 용해와 연관된 (Ca, Mg)-$SO_4$ 유형, 그리고 이 두 유형이 복합적으로 나타나는 (Ca, Mg)-($HCO_3$, $SO_4$) 유형 등의 3가지 유형이 나타난다. 수질 오염현상은 광산배수와 유사한 높은 $SO_4$ 함량과, 지표 토지이용에 따른 질산염의 국지적 발생이 확인된다. 여름철 집중강수는 하천수질의 전반적인 유형에는 영향을 미치지 않으나, 지표기원의 오염물질인 질산염과 염소 등의 유입이 증가되는 현상을 초래한다. 그럼에도 불구하고, 증가된 하천유출량으로 인해 용존이온의 농도 희석효과가 발생한다. 본 연구결과는 지표수 수질관리의 시발점이 주 공급원이 되는 지하수질의 특성화로부터 시작되어야 함을 지시한다.

Keywords

References

  1. Brunner, P., Cook, P.G. and Simmons, C.T. (2009) Hydrogeologic controls on disconnection between surface water and groundwater, Water Resources Research, Vol.45, W01422.
  2. Buzzi, D.C., Viegas, L.S., Rodrigues, M.A.S., Bernardes, A.M. and Tenorio, J.A.S. (2013) Water recovery from acid mine drainage by electrodialysis, Minerals Engineering, v.40, p.82-89. https://doi.org/10.1016/j.mineng.2012.08.005
  3. Choung, S.W., Woo, N.C. and Lee, K.S. (2004) Temporal and Spatial Variations of Groundwater Quality in Hanlim, Jeju island, Journal of The Geological Society of Korea, v.40, n.4, p.537-558.
  4. Choi, J.Y., Um, J.G., Kwon, H.H. and Shim, Y.S. (2010) Relationship between fracture distribution and the acidity of mine drainage at the Il-Gwang mine, The Journal of Engineering Geology, v.20, n.4, p.425-436.
  5. Fleckenstein, J.H., Krause, S., Mannah, D.M. and Boano, F. (2010) Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics, Advances in Water Resources, v.33, p.1291-1295. https://doi.org/10.1016/j.advwatres.2010.09.011
  6. Gibbs, R.J. (1970) Mechanism controlling world water chemistry, Science, v.170, p.135-137.
  7. Haria, A.H., Shand, P., Soulsby, C. and Noorduijn, S. (2013) Spatial delineation of groundwater-surface water interactions through intensive in-stream profiling, Hydrological Processes, v.27, p.628-634. https://doi.org/10.1002/hyp.9551
  8. Hounslow, A.W. (1995) Water quality data analysis and interpretation, Lewis Publishers, Boca Raton, p.80-81.
  9. Howard, C.S. (1933) Determination of Total Dissolved Solids in Water Analysis, Industrial And Engineering Chemistry, Analytical Edition, v.5, n.1, p.4-6. https://doi.org/10.1021/ac50081a004
  10. Hughes, D.A. (2004) Incorporating groundwater recharge and discharge functions into an existing monthly rainfall-unoff model, Hydrological Sciences Journal, v.49(2), p.297-311. https://doi.org/10.1623/hysj.49.2.297.34834
  11. Hyun, Y.J., Kim, H.J., Lee, S.S. and Lee, K.K. (2011) Characterizing streambed water flux using temperature and head data in Munsan stream, South Korea, Journal of Hydrology, v.402, p.377-387. https://doi.org/10.1016/j.jhydrol.2011.03.032
  12. Hyun, Y.J. and Kim, Y.S (2013) Environmental aspects and management of hyporheic zones, Korea Environment Institute, p.1773-1892.
  13. Ivkovic, K.M., Letcher, R.A. and Croke, B.F.W. (2009) Use of a simple surface-groundwater interaction model to inform water management, Australian Journal of Earth Sciences, v.56, p.71-80. https://doi.org/10.1080/08120090802541945
  14. Ivkovic, K.M. (2009) A top-down approach to characterise aquifer-river interaction processes, Journal of Hydrology, v.365, p.145-155. https://doi.org/10.1016/j.jhydrol.2008.11.021
  15. Jacobs, J.A., Lehr, J.H. and Testa, S.M. (2014) Acid Mine Drainage, Rock Drainage, and Acid Sulfate Soils: Causes, Assessment, Prediction, Prevention, and Remediation, Wiley, p.3-8.
  16. Kim, G.B., Son, Y.C., Lee, S.H., Jeong, A.C., Cha, E.J. and Ko, M.J. (2012) Understanding of Surface Water-Groundwater Connectivity in an Alluvial Plain using Statistical Methods, The Journal of Engineering Geology, v.22, p.207-221. https://doi.org/10.9720/kseg.2012.22.2.207
  17. Kim, H.J., Hyun, Y.J. and Lee, K.K. (2009) Hydro-ecological characterizations in groundwater dependent ecosystem, Journal of Korean Wetlands Society, v.11, n.3, p.1-8.
  18. Kim, H.J., Lee, J.Y., Lee, S.S., Hyun, Y.J. and Lee, K.K. (2011) Characterization of vertical temperature distribution in hyporheic zone, Journal of Korean Wetlands Society, v.13, n.2, p.265-273.
  19. Kim, J.H., Yoon, U.S., Choi, J.W., Bae, G.H. and Kwon, H.S. (2000) Development Characteristics of Osheepchun Fault Zone, Proceedings of Annual Conference, Journal of The Geological Society of Korea, p.17.
  20. Kim, J.W., Jun, H.P., Lee, C.J., Kim, N.J. and Kim, G.B. (2013) Groundwater-use Estimation Method Based on Field Monitoring Data in South Korea, The Journal of Engineering Geology, v.23, n.4, p.467-476. https://doi.org/10.9720/kseg.2013.4.467
  21. Kim, N.W., Yoo, S.Y., Chung, I.M. and Lee, J.W. (2009) Analysis on the Spatial-temporal Variation of Surface-groundwater Interaction on the Watershed Basis, Journal of Korea Water Resources Association, v.42, n.1, p.21-31. https://doi.org/10.3741/JKWRA.2009.42.1.21
  22. Kim, Y.J. and Kang, H.J. (2009) Biogeochemical reactions in hyporheic zone as an ecological hotspot in natural streams, Journal of Korean Wetlands Society, v.11, n.1, p.123-130.
  23. Ko, K.S., Kim, Y.G., Koh, D.C., Lee, K.S., Lee, S.G., Kang, C.H., Seong, H.J. and Park, W.B. (2005) Hydrogeochemical characterization of groundwater in Jeju island using principal component analysis and geostatistics, Journal of Economic and Environmental Geology, v.38, p.435-450.
  24. Kortatsi, B.K., Tay, C.K., Anornu, G., Hayford, E. and Dartey, G.A. (2008) Hydrogeochemical evaluation of groundwater in the river Offin basin, Ghana, Environmental Geology, v.53, p.1651-1662. https://doi.org/10.1007/s00254-007-0772-0
  25. Le Maitre, D.C. and Colvin, C.A. (2008) Assessment of the contribution of groundwater discharges to rivers using monthly flow statistics and flow seasonality, Water SA, v.34, n.5, p.549-564.
  26. Lee, B.S and Woo, N.C (2003) The effects of bed-rock formations on water quality and contamination : statistical approaches, Journal of Economic and Environmental Geology, v.36, n.6, p.415-429.
  27. Lee, E.S. (2004) Ground water sustainability and ground water - surface water interaction, Journal of The Geological Society of Korea, v.30, n.3, p.361-368.
  28. Lee, J.Y., Won, J.H. and Hahn, J.S. (2006) Evaluation of hydrogeologic conditions for groundwater heat pumps: analysis with data from national groundwater monitoring stations, Geoscience Journal, v.10, n.1, p.91-99. https://doi.org/10.1007/BF02910336
  29. Lee, K.S. and Lee, C.B. (1999) Oxygen and hydrogen isotopic composition of precipitation and river waters in South Korea, Journal of The Geological Society of Korea, v.35, n.1, p.73-84.
  30. Lee, S.I., Kim, B.C. and Kim, S.M. (2004) Effective use of water resources through conjunctive use- (I) the methodology, Journal of Korea Water Resources Association, v.37, n.10, p.789-798. https://doi.org/10.3741/JKWRA.2004.37.10.789
  31. Marchand, C., Lallier-Verges, E., Allenbach, M. (2011) Redox conditions and heavy metals distribution in mangrove forests receiving shrimp farm effluents (Teremba bay, New Caledonia). Journal of Soils Sediments, v.11, p.529-541. https://doi.org/10.1007/s11368-010-0330-3
  32. Ministry of environment (2003) International Year of Freshwater Materials, p.15.
  33. Nimick, D.A. and Moore, J.M. (1991) Prediction of water-soluble metal concentrations in fluvially deposited tailing sediments, Upper Clark Folk Valley, Montana, U.S.A. Appled Geochemistry, v.6, p.285-304.
  34. Ryu, J.S., Chang, H.W. and Lee, K.S. (2008) Hydrogeochemistry and isotope geochemistry of the Han River system: a summary, Journal of The Geological Society of Korea, v.44, n.4, p.467-477.
  35. Shand, P., Haria, A.H., Neal, C., Griffiths, K.J., Gooddy, D.C., Dixon, A.J., Hill, T., Buckley, D.K. and Cunningham, J.E. (2005) Hydrochemical heterogeneity in an upland catchment; further characterisation of the spatial, temporal and depth variations in soils, streams and groundwaters of the Plynlimon forested catchment, Wales, Hydrology and Earth System Sciences. v.9(6), p.611-634.
  36. Soulsby, C., Malcolm, I.A., Youngson, A.F., Tetzlaff, D., Gibbins, C.N. and Hannah, D.M. (2005) Groundwater-surface water interactions in upland Scottish rivers: hydrological, hydrochemical and ecological implications, Scottish Journal of Geology, v.41 p.39-49. https://doi.org/10.1144/sjg41010039
  37. Tanner, J.L. and Hughes, D.A. (2015) Surface waterground-water interactions in catchment scale water resources assessments-understanding and hypothesis testing with a hydrological model, Hydrological Sciences Journal, v.60(11), p.1880-1895.
  38. Winter, T.C., Harvey, J.W., Franke, O.L. and Alley, W.M. (1999) Ground water and surface water, a single resource, U.S. Geological Survey, Circular 1139, p.79.
  39. Woo, N.C (2013) Climate change and groundwater sustainability in Korea for next decade, Journal of Soil and Groundwater Environment, v.18, n.1, p.1-5.
  40. Yoon, S.O., Hwang, S.I. and Lee, G.R. (2007) Geomorphic evolution of fluvial terraces at Yeongdong.Yeongseo streams in Gangwon province, Korea, Journal of The Korean Geographical Society, v.42, n.3, p.388-404.
  41. Yoon, H.S., Gee, E.D., Ji, M.K., Lee, W.R., Yang, J.S., Park, Y.T., Kwon, H.H., Ji, W.H., Kim, K.J., Jeon, B.H. and Choi, J.Y. (2011) Developing for reduction technology of AMD through coating on the surface of pyrite using minerals, Journal of The Korean Geo-Environmental Society. v.12, n.2, p.15-22.
  42. Yu, J.Y., Choi, I.K. and Kim, H.S. (1994) Geochemical characteristics of the surface water depending on the bed rock types in the Chuncheon area, Journal of The Geological Society of Korea, v.30, n.3, p.307-324.

Cited by

  1. Hydrochemical characteristics of groundwater and stream water in a karst area of Samcheok, Korea vol.55, pp.1, 2019, https://doi.org/10.14770/jgsk.2019.55.1.117