• Title/Summary/Keyword: water dynamics

Search Result 1,361, Processing Time 0.024 seconds

Response of Water Tetramer to Intense Femtosecond Laser Pulses

  • Wang, Zhiping;Xu, Xuefen;Qian, Chaoyi;Wang, Yanbiao;Wang, Xu
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.278-283
    • /
    • 2017
  • We theoretically study the dynamics of water tetramer in intense femtosecond laser pulses with different frequencies. The simulations are carried out by incorporating the molecular dynamics method non-adiabatically into the time-dependent local-density approximation (TDLDA-MD). Three typical scenarios of water tetramer including the normal vibration with enlarged OH bonds, free OH bonds breaking and the pure Coulomb explosion are presented by investigating the electronic and ionic dynamics. The result indicates that the ionization is enhanced and the corresponding fragmentation effect as well as the damping of the dipole moment are found more notably when increasing the laser frequency especially when the frequency falls in the resonant region of the absorption spectra. The study of the level depletion reveals that the ratio of the emission amount from different levels can be controlled by changing the laser frequency referring to the Keldysh parameter.

Ecohydrologic Analysis on Soil Water and Plant Water Stress : Focus on Derivation and Application of Stochastic Model (토양수분과 식생의 물 압박에 대한 생태수문학적 해석 : 추계학적 모형의 유도와 적용을 중심으로)

  • Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.99-106
    • /
    • 2008
  • With globally increasing interests in climate-soil-vegetation system, a new stochastic model of soil water and plant water stress is derived for better understanding of the soil water and plant water stress dynamics and their role in water-controlled ecosystem. The steady-state assumption is used for simplifying the equations. The derived model is simple yet realistic that it can account for the essential features of the system. The model represents the general characteristics of rainfall, soil, and vegetation; i.e. the soil moisture constitutes the decrease form of the steady-state and the plant water stress becomes increasing with the steady state when the rainfall is decreased. With this model, further deep study for the effects of soil water and plant water stress on the system will be accomplished.

Development of a System Dynamics Model to Support the Decision Making Processes in the Operation and Management of Water Supply Systems (상수도 시스템의 운영 및 유지관리 의사결정 지원을 위한 시스템다이내믹스 모형의 개발)

  • Park, Su-Wan;Kim, Kyu-Lee;Kim, Bong-Jae;Lim, Ki-Young
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.609-623
    • /
    • 2010
  • In this paper the feedback loop mechanisms that are inherent in the management of water supply systems were identified based on the system dynamics modeling methodology. As a result, a system dynamics (SD) computer simulation model that can be used to aid efficient management of water supply systems was developed. The developed SD model can be used to predict operating conditions of water supply systems including the effects of pipe maintenance on the entire system. The developed model is consisted of water supply, pipe maintenance and water supply business finance model. The operation and maintenance data from a study water supply system were used to verify the model and to predict the past and future operating conditions of the system. The policy leverage that greatly affects the operating condition was evaluated by the sensitivity analyses for the operational indices due to changes in the exogenous variables. It was found that while the pipe maintenance related exogenous variables had great effects on the leakage and conditions of pipes, they did not have great effects on the major operational indices such as revenue water ratio. It is considered that the social costs due to leaks and pipe breaks and the corresponding mechanism of propagation of the costs must be modeled to better evaluate the effects of pipe maintenance on the operational conditions of water supply systems.

A Numerical Study on the Coupled Dynamics of Ship and Flooding Water (선박 운동과 내부 유동의 연성 운동에 관한 수치해석 연구)

  • Hong, Sa-Young;Kim, Jin;Park, Il-Ryong;Choi, Seok-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.631-637
    • /
    • 2006
  • This paper presents a numerical method to solve the ship motion coupled with internal fluid flow. Physically the internal fluid motion is coupled with the ship motion. Hitherto the previous numerical results of the coupled motion predict only the general tendency with experiments. The main reason of inaccuracy is that the coupled dynamics of ship motion and internal water motion is not accurately accounted. In this study CFD technique based on VOF is employed for the accurate analysis of flooding water motion. Some cases of the 24th ITTC stability committee's benchmark.study for tanker with internal fluid are analyzed by coupling the ship motion and sloshing dynamics. The calculated ship motion is compared with the experimental result to validate the coupled scheme and is in agreement with the experimental result.

Probabilistic Solution to Stochastic Soil Water Balance Equation using Cumulant Expansion Theory (Cumulant 급수이론을 이용한 추계학적 토양 물수지 방정식의 확률 해)

  • Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • Based on the study of soil water dynamics, this study is to suggest an advanced stochastic soil water model for future study for drought application. One distinguishable remark of this study is the derivation of soil water dynamic controling equation for 3-stage loss functions in order to understand the temporal behaviour of soil water with reaction to the precipitation. In terms of modeling, a model with rather simpler structure can be applied to regenerate the key characteristics of soil water behavior, and especially the probabilistic solution of the derived soil water dynamic equation can be helpful to provide better and clearer understanding of soil water behavior. Moreover, this study will be the future cornerstone of applying to more realistic phenomenon such as drought management.

Molecular Dynamics Simulations of the OSS2 Model for Water and Oxonium Ion Monomers, and Protonated Water Clusters

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.107-111
    • /
    • 2002
  • The OSS2 (Oj?me-Shavitt-Singer 2)[L. Oj?me et al., J. Chem. Phys. 109, 5547 (1998)] model for the solvated proton in water is examined for $H_2O,\;H_3O^+,\;H_5O_2^+,\;H_7O_3^+,\;and\;H_9O_4^-$ by molecular dynamics (MD) simulations. The equilibrium molecular geometries and energies obtained from MD simulations at 5.0 and 298.15 K agree very well with the optimized calculations.

A Study on the Drift Characteristics of Person-in-Water (인체의 표류특성에 관한 연구)

  • ;T. C. Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.85-92
    • /
    • 1997
  • To understand the dynamics of a drifting object, an analysis based on fluid dynamics theory is presented. A simplified analysis shows a consistency with the linear formula currently used for search and rescue mission. Also an experiment using miniatured human models has been conducted to study the drift characteristics of Person-in-Water. The tests were carried out at the water channel facility and the models were tested in different positions and styles. The measured drag coefficients for human body ranged over 0.4-1.2.

  • PDF

Study of rganized Assemblies and Surfaces Using Picosecond Lasers

  • Bhattacharyya, Kankan
    • Journal of Photoscience
    • /
    • v.6 no.3
    • /
    • pp.123-128
    • /
    • 1999
  • Dynamics of many ultrafast processes are markedly slowed down in various organized molecular assemblies compared to ordinary liquids. We will show that the solvation dynamics of water molecules is affected amost dramatically and is retarded by 3 ∼4 orders of magnitude in microemulsions, micells and lipids. We will also discuss how the access to fewer water molucules and the drastically altered local pH in an organized asembly affected the excited state proton transfer processes. Finally, we will show how surface second haromonic generation can be used to study the air-water surface.

  • PDF

Effects of Hybrid Lipid Concentration on Equilibrium Domain Size in a Lipid Bilayer Immersed in Water

  • Sornbundit, Kan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1899-1903
    • /
    • 2018
  • The effects of introducing hybrid lipids to a lipid bilayer containing saturated and unsaturated lipids immersed in water were studied. The lipid and water molecules were modeled as coarse-grained particles. All particles were simulated by using the dissipative particle dynamics method. The results showed that the hybrid lipids accumulated at the interface between the saturated and the unsaturated lipid domains. The relation between the hybrid lipid concentration and the equilibrium domain size was obtained. Moreover, the sizes of the simulated lipid domains are consistent with that given by the lipid raft definition.