DOI QR코드

DOI QR Code

Response of Water Tetramer to Intense Femtosecond Laser Pulses

  • Wang, Zhiping (Department of Fundamental Courses, Wuxi Institute of Technology) ;
  • Xu, Xuefen (Department of Fundamental Courses, Wuxi Institute of Technology) ;
  • Qian, Chaoyi (Department of Fundamental Courses, Wuxi Institute of Technology) ;
  • Wang, Yanbiao (Department of Fundamental Courses, Wuxi Institute of Technology) ;
  • Wang, Xu (Department of Fundamental Courses, Wuxi Institute of Technology)
  • Received : 2016.10.12
  • Accepted : 2017.05.18
  • Published : 2017.08.25

Abstract

We theoretically study the dynamics of water tetramer in intense femtosecond laser pulses with different frequencies. The simulations are carried out by incorporating the molecular dynamics method non-adiabatically into the time-dependent local-density approximation (TDLDA-MD). Three typical scenarios of water tetramer including the normal vibration with enlarged OH bonds, free OH bonds breaking and the pure Coulomb explosion are presented by investigating the electronic and ionic dynamics. The result indicates that the ionization is enhanced and the corresponding fragmentation effect as well as the damping of the dipole moment are found more notably when increasing the laser frequency especially when the frequency falls in the resonant region of the absorption spectra. The study of the level depletion reveals that the ratio of the emission amount from different levels can be controlled by changing the laser frequency referring to the Keldysh parameter.

Keywords

References

  1. K. Yamanouchi, "The next frontier," Sci. 295, 1659-1660 (2002). https://doi.org/10.1126/science.1068449
  2. M. Protopaps, C. H. Keitel, and P. I. Knight, "Atomic physics with super-high intensity lasers," Rep. Prog. Phys. 60, 389-486 (1997). https://doi.org/10.1088/0034-4885/60/4/001
  3. S. I. Chu and D. A. Telnov, "Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields," Phys. Rep. 390, 1-131 (2004). https://doi.org/10.1016/j.physrep.2003.10.001
  4. B. Friedrich and D. Herschbach, "Alignment and trapping of molecules in intense laser fields," Phys. Rev. Lett. 74, 4623-4626 (1995). https://doi.org/10.1103/PhysRevLett.74.4623
  5. L. Quaglia and C. Cornaggia, "Experimental evidence of excited multicharged atomic fragments coming from laserinduced coulomb explosion of molecules," Phys. Rev. Lett. 84, 4565-4568 (2000). https://doi.org/10.1103/PhysRevLett.84.4565
  6. T. Zuo, S. Chelkowski, and A. D. Bandrauk, "Ionization rates of $H_2^^+$ in an intense laser field by numerical integration of the time-dependent Schrödinger equation," Phys. Rev. A. 46, R5342-R5345 (1992). https://doi.org/10.1103/PhysRevA.46.R5342
  7. J. D. Smith, C. D. Cappa, K. R. Wilson, B. M. Messer, R. C. Cohen, and R. J. Saykally, "Energetics of hydrogen bond network rearrangements in liquid water," Sci. 306, 851-853 (2004). https://doi.org/10.1126/science.1102560
  8. K. Liu, J. D. Cruzan, and R. J. Saykally, "Water clusters," Sci. 271, 929-933 (1996). https://doi.org/10.1126/science.271.5251.929
  9. R. Bukowski, K. Szalewicz, G. C. Groenenboon, and A. van der Avoird, "Predictions of the properties of water from first principles," Sci. 315, 1249-1252 (2007). https://doi.org/10.1126/science.1136371
  10. H. T. Liu, J. P. Muller, M. Beutler, M. Ghotbi, F. Noack, W. Radloff, N. Zhavoronkov, C. P. Schulz, and I. V. Hertel, "Ultrafast photo-excitation dynamics in isolated, neutral water clusters," J. Chem. Phys. 134, 094305(1-10) (2011).
  11. H. Tachikawa and T. Takada, "Proton transfer rates in ionized water clusters $(H_2O)_2$ (n=2-4)," RSC Adv. 5, 6945-6953 (2015). https://doi.org/10.1039/C4RA14763D
  12. F. Calvayrac, P.-G. Reinhard, E. Suraud, and C. A. Ullrich, "Nonlinear electron dynamics in metal clusters," Phys. Rep. 337, 493-578 (2000). https://doi.org/10.1016/S0370-1573(00)00043-0
  13. Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbaumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, "Laser-driven nonlinear cluster dynamics," Rev. Mod. Phys. 82, 1793-1842 (2010). https://doi.org/10.1103/RevModPhys.82.1793
  14. Z. P. Wang, P. M. Dinh, P.-G. Reinhard, E. Suraud, and F. S. Zhang, "Nonadiabatic effects in the irradiation of ethylene," Inter. J. Quanm. Chem. 111, 480-486 (2011). https://doi.org/10.1002/qua.22656
  15. Y. L. Jiao, F. Wang, X. H. Hong, W. Y. Su, Q. H. Chen, and F. S. Zhang, "Electron dynamics in $CaB_6$ induced by one- and two-color femtosecond laser," Phys. Lett. A 377, 823-827 (2013). https://doi.org/10.1016/j.physleta.2013.02.002
  16. U. F. Ndongmouo-Taffoti, P. M. Dinh, P.-G. Reinhard, E. Suraud, and Z. P. Wang, "Exploration of dynamical regimes of irradiated small protonated water clusters," Eur. Phys. J. D 58, 131-136 (2010). https://doi.org/10.1140/epjd/e2010-00055-2
  17. Z. P. Wang, Y. M. Wu, X. M. Zhang, and C. Lu, "TDDFT study of excitation of water molecules with short laser pulses," Chin. Phys. B 22, 073301(1-5) (2013).
  18. Z. P. Wang, P. M. Dinh, P.-G. Reinhard, and E. Suraud, "Ultrafast nonadiabatic dynamics of water dimer in femtosecond laser pulses," Laser Phys. 24, 106004(1-7) (2014).
  19. D. J. Wales, T. R. Walsh, "Theoretical study of the water tetramer," J. Chem. Phys. 106, 7193-7207 (1997). https://doi.org/10.1063/1.473681
  20. S. Goedecker, M. Teter, and J. Hutter, "Separable dual-space Gaussian pseudopotentials," Phys. Rev. B 54, 1703-1710 (1996). https://doi.org/10.1103/PhysRevB.54.1703
  21. E. K. U. Gross and W. Kohn, "Time-dependent densityfunctional theory," Adv. Quant. Chem. 21, 255-291 (1990).
  22. C. Legrand, E. Suraud, and P.-G. Reinhard, "Comparison of self-interaction-corrections for metal clusters," J. Phys. B 35, 1115-1128 (2002). https://doi.org/10.1088/0953-4075/35/4/333
  23. C. A. Ullrich, "Time-dependent Kohn-Sham approach to multiple ionization," J. Mol. Struct. (THEOCHEM) 501-502, 315-325 (2000) . https://doi.org/10.1016/S0166-1280(99)00442-X
  24. F. Calvayrac, P.-G. Reinhard, and E. Suraud, "Spectral signals from electronic dynamics in sodium clusters," Ann. Phys. (NY) 255, 125-162 (1997). https://doi.org/10.1006/aphy.1996.5654
  25. L. Belau, K. R. Wilson, S. R. Leone, and M. Ahmed, "Vacuum Ultraviolet (VUV) photoionization of small water clusters," J. Phys. Chem. A 111, 10075-10083 (2007). https://doi.org/10.1021/jp075263v
  26. P. A. Pieniazek, J. VandeVondele, P. Jungwirth, A. I. Krylov, and S. E. Bradforth, "Electronic structure of the water dimer cation," J. Phys. Chem. A 112, 6159-6170 (2008).
  27. S. M. Javier, M. Manuela, and R. S. Daniel, "Ab initio determination of the ionization potentials of water clusters $(H_2O)_n$ (n=2-6)," J. Chem. Phys. 136, 244306 (2012). https://doi.org/10.1063/1.4730301
  28. C. Y. Zhang, J. W. Yao, C. Q. Li, Q. F. Dai, S. Lan, V. A. Trofimov, and T. M. Lysak, "Asymmetric femtosecond laser ablation of silicon surface governed by the evolution of surface nanostructures," Opt. Express 21, 4439-4446 (2013). https://doi.org/10.1364/OE.21.004439
  29. L. V. Keldysh, "Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307-1314 (1964).
  30. F. Huisken, M. Kaloudis, and A. Kulcke, "Infrared spectroscopy of small size-selected water clusters," J. Chem. Phys. 104, 17-25 (1996). https://doi.org/10.1063/1.470871
  31. Z. Z. Lin and X. Chen, "Ultrafast dynamics and fragmentation of C60 in intense laser pulses," Phys. Lett. A 377, 797-800 (2013). https://doi.org/10.1016/j.physleta.2013.01.034