• 제목/요약/키워드: water depth change

검색결과 567건 처리시간 0.033초

동해에서 저주파 음파전파에 미치는 난수성 소용돌이의 영향 (Influence of a Warm Eddy on Low-frequency Sound Propagation in the East Sea)

  • 김봉채;최복경;김병남
    • Ocean and Polar Research
    • /
    • 제34권3호
    • /
    • pp.325-335
    • /
    • 2012
  • It is well known that sound waves in the sea propagates under the influence of sea surface and bottom roughness, the sound speed profile, the water depth, and the density of sea floor sediment. In particular, an abrupt change of sound speed with depth can greatly affect sound propagation through an eddy. Eddies are frequently generated in the East Sea near the Korean Peninsula. A warm eddy with diameter of about 150 km is often observed, and the sound speed profile is greatly changed within about 400 m of water depth at the center by the eddy around the Ulleung Basin in the East Sea. The characteristics of low-frequency sound propagation across a warm eddy are investigated by a sound propagation model in order to understand the influence of warm eddies. The acoustic rays and propagation losses are calculated by a range-dependent acoustic model in conditions where the eddy is both present and absent. We found that low-frequency sound propagation is affected by the warm eddy, and that the phenomena dominate the upper ocean within 800 m of water depth. The propagation losses of a 100 Hz frequency are variable within ${\pm}15$ dB with depth and range by the warm eddy. Such variations are more pronounced at the deep source near the sound channel axis than the shallow source. Furthermore, low-frequency sound propagation from the eddy center to the eddy edge is more affected by the warm eddy than sound propagation from the eddy edge to the eddy center.

기후모형(GCMs)에 기반한 2018년 평창 동계올림픽 적설량 및 수문모의 (GCMs-Driven Snow Depth and Hydrological Simulation for 2018 Pyeongchang Winter Olympics)

  • 김정진;류재현
    • 한국수자원학회논문집
    • /
    • 제46권3호
    • /
    • pp.229-243
    • /
    • 2013
  • 평창유역의 적설량을 모의하기 위하여 HSPF 모형을 적용하였다. 미래 적설량을 평가하기 위해 CIMIP3에서 제공하는 A1, A1B, B1의 온실가스 배출시나리오에 기반한 GCMs를 이용하였으며, HSPF 모형과 GCMs의 통계학적 오류를 최소화 하기 위해 편의보정(Bias-correction)과 시간적 분해모형(Temporal disaggregation)을 적용하였다. 모형의 검 보정 결과 모의된 유출량과 적설량의 경우 모형 효율이 높게 나타났으며, 특히 모형의 검정 후 상관계수를 분석한 결과 월별 유출량의 상관계수는 0.94로 나타났다. 월별 적설량, 또한, 상관계수가 0.91로 나타나 보정된 HSPF 모형이 평창지역에 대한 유출량과 적설량을 잘 모의하고 있는 것으로 판단된다. GCMs를 이용한 2018년 평창올림픽 경기장의 적설량을 분석한 결과 1월에는 17.62%, 2월에는 9.38%, 3월에는 7.25%의 적설량이 감소되는 것으로 나타났다.

갈치 끌낚시 어구의 수심변화 및 어획량 시험 (A study on the change of the depth and catch of hairtail trolling lines)

  • 김문관;박수현;강형철;박용석;안영일;이춘우;박수봉
    • 수산해양기술연구
    • /
    • 제54권2호
    • /
    • pp.107-115
    • /
    • 2018
  • In this study, we tested Japanese trolling lines in the Jeju fishery. This fishery simulates the natural marine environment with many seabed rocks, and has been redesigned and manufactured it to be suitable for the Jeju fishery. In order to ensure that the trolling lines were deployed at the inhabitation depth of hairtails, the conditions required for the fishing gear to reach the target depth were determined for use during the experiment. The experimental test fishing was conducted at the depth of 120 m water in front of Jeju Seongsanpo and in the offshore area of Jeju Hanlim. The fishing gear used in the test fishing is currently used in a variety of field operations in Japan. However, several problems were identified, such as twisting of the line during its deployment and excessive sinking of the main line. The fishing gear was, therefore, redesigned and manufactured to be more suitable for the Jeju fishery environment. For the fishing gear to accurately reach the target depth, depth loggers were installed at the starting point of the main line and at the 250 m and 340 m points of the line. Depth and time were recorded every 10 seconds. According to the daytime positioning of hairtails in the lower water column, the target depth of the fishing gear was set at 100-110 m, which was 10-20 m above the sea floor. At a speed of 1.9 knots and with a 9 kg sinker attached, the main fishing line was deployed and catch yields at depths of 100 m, 150 m and 180 m were recorded and analyzed. When the 180 m main line was fully deployed, the time for the hairtail trolling lines to arrive at the appropriate configuration had to be 5 minutes. At this time, the depth of the fishing gear was 16-23 m above the sea floor, in accordance with the depths at which the hairtails were during the day. In addition, in order to accurately place the fishing gear at the inhabitation water depth of hairtails, the experimental test fishing utilized the results of the depth testing that identified the conditions required for the fishing gear to reach the target depth, and the result was a catch of up to 97 kg a day.

경사파중 수중평판에 의한 파랑변형 (Wave Diffractions by Submerged Flat Plate in oblique Waves)

  • 조일형;김현주
    • 한국항만학회지
    • /
    • 제10권1호
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF

논 써레질한 후의 경과일수 및 담수심이 수도이앙기의 작업성능에 미치는 영향 (A Study on the Optimum Field Preparation Procedures for the Proper Working Performances of Rice Transplanters)

  • 홍종호;차균도
    • 한국농공학회지
    • /
    • 제21권3호
    • /
    • pp.83-91
    • /
    • 1979
  • This study was conducted in order to find out the performance of rice transplanters in accordance with the change of the trans-planting days after pudding and the water depth flooding the paddy field at the time of transplanting : and thus to select the optimum paddy field preparation procedures for an efficient utilization of rice transplanters. The performance factors of the two different types of rice transplanters were measured during the first 6 consecutive days after puddling and with 3 different levels of water depth flooding the paddy fields. The results of this study were analysed and summarized as follows : 1. Wheel sinkage decreased very rapidly from 0 to 2 days after puddling and slowly from 3 to 5 days after puddling. 2. The depth of the test cone penetration decreased rapidly during the first few days after puddling. It was 17.8cm just after puddling, and decreased to 13.4cm one day after puddling. After 2 days, the rate of decrease was dampened, and after 5 days it kept constant value of 9.2cm. 3. Two days after puddling, the hill interval was 15.8cm (98.75% of the preset value) for broadcasted seedling rice transplanter with 3cm flooding depth : This value was the closest to the pre-adjusted value of 16cm. The general performance of broadcasted-seedling type rice transplanter was better than that of strip-seedling type rice transplanter. 4. Usually the working performance of a rice transplanter is evaluated with uniformity and adjustability of the hill intervals. The hill interval was the most uniform and closest to the pre-set value of 16cm when planted two days after puddling with 3cm of water depth. When it was inavoidable to plant 4 days after puddling with stripseedling type rice transplanter, it is advisable to let the water flooded somewhat deeper. 5. The percentage of missing hills including floating and burried seedlings was the highest just after puddling and ie decreased substancially until 3 days after puddling and then it increased again. Hence, the optimal time transplanting is to be between 2 and 3 days after puddling. 6. Better postures of planted seedlings were found when planter 2 days after puddling than 3 days after puddling. Six cm of flooding water depth always gave the best results with respect to the postures of planted seedlings. Broadcasted-seedling rice transplanter, in general, showed better posture of planted seedlings than did strip-seedling type rice transplanter. 7. Judging from the above results, the optimal conditions will be 3cm of flooding depth and transplanting between 2 and 3 days after puddling.

  • PDF

퍼지 논리를 이용한 모형 증층트롤 어구의 수심제어시스템 개발 (development of a Depth Control System for Model Midwater Trawl Gear Using Fuzzy Logic)

  • 이춘우
    • 수산해양기술연구
    • /
    • 제36권1호
    • /
    • pp.54-59
    • /
    • 2000
  • 중층트롤어구의 수심 제어는 시스템의 복잡성과 비선형성 등으로 인하여 아직까지 자동화되지 않았다. 본 연구에서는 회류수조에서 작동되는 모형 트롤어구의 예망시스템을 제작하였으며, 이 시스템의 수심을 자동으로 제어하기 위해서 퍼지논리를 이용한 제어시스템을 구성하여 성능을 실험하였다. 제어시스템의 수심제어 규칙은 숙련된 항해사나 선장이 실제 조업에서 어구의 수심을 제어하기 위해 사용하는 지식을 제어규칙화 한 것과 모형실험에 적합하도록 수정한 규칙 두 가지를 사용하였다. 제어계의 성능은 예망속도를 일정히 유지하면서 목표수심을 스텝상으로 변경시켰을 때의 추종성능 실험과 목표수심을 일정히 유지하면서 예망속도를 변경시켰을 때의 보상성능을 실험을 통하여 분석하였다. 1. 본 연구에서 제안된 두 가지 제어기는 모두 일정한 유속(0.35m/s)에서 스텝상의 목표수심 변경에대해서 빠른 추종성능을 나타내었다. 특히 수정된 제어규칙에서는 모형 어구의 수십을 보다 안정되게 제어하였다. 2. 예망속도(유속)를 변화시켜 어구저항을 증감시킨 실험에서도 두 제어기는 비교적 양호한 보상 성능을 나타내었는데, 실제 조업에서 사용하는 규칙은 작은 외란에도 빨리 반응하였으며, 수정된 제어규칙은 수심편차가 어느 정도 커져야 제어동작을 하였다. 3. 본 연구에서 제작된 모형트롤시스템은 실물트롤 시스템의 운동 특성과 거의 일치하였고, 또한 설계된 제어기는 양호한 제어성능을 나타내어 모형실험을 통한 시스템의 해석과 실물 트롤시스템에 적용가능성이 높은 제어계의 설계가 가능하였다

  • PDF

기후학적 물수지에 의한 금강유역 가뭄사례 분석 (Case analysis of the drought events in Geum river basin with climatic water balance.)

  • 김주철;안정민;이상진;황만하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1452-1456
    • /
    • 2009
  • Water related disasters frequently occur in these days due to global warming and climatic change. This give us that the trend of mal-distribution of available water resources would be increased and the environment of water resources management getting much worse. Therefore the establishment of the effective strategy should be required for water resources management urgently. In this paper the hydrological characteristics and corresponding social phenomena of the drought events in Geum river basin are inspected in depth. The word, social phenomena, means not the quantitative damage but the qualitative social influences and its main characters are analyzed by the collections of the mass media articles. This study will be helpful in prognosticating the future drought occurrence and the establishment of counterplan to them.

  • PDF

사석마운드 위에 설치되는 조력발전용 수문 케이슨의 통수성능에 대한 실험적 연구 (Experimental Investigation on the Change of Water Discharge Capability of Sluice Caisson for Tidal Power Plant Placed on the Rubble Mound)

  • 이달수;오상호;이진학;박우선;조휴상;엄현민
    • 신재생에너지
    • /
    • 제4권2호
    • /
    • pp.94-104
    • /
    • 2008
  • The change of water discharge capability of sluice caisson for tidal power plant according to installation of the rubble mound was investigated by performing laboratory experiment. The experiment was carried out in an open channel flume with a great care to measure flow rate and water level in the flume accurately. Eight different sluice caisson models were used in the experiment. The water discharge capabilities of seven sluice models decreased with respect to the placement of the rubble mound, while increased for only one sluice model. On average, the values of discharge coefficient decreased by approximately 10% when the sluice models were placed on the rubble mound. It is concluded that the shape of the rubble mound can affect the water discharge capability of the sluice caisson, so that its shape should be significantly considered in the design of the sluice caisson, especially when it is deployed in a site of relatively deeper depth.

  • PDF

국내 수력발전댐 저수지 수질의 시공간 변화 분석 (Analysis Temporal and Spatial Changes of Water Quality in Domestic Hydropower Dam Reservoirs)

  • 박경덕;강동환;조원기;양민준
    • 한국환경과학회지
    • /
    • 제31권5호
    • /
    • pp.373-388
    • /
    • 2022
  • This study analyzed the temporal and spatial characteristics of water quality for five hydropower dam reservoirs in South Korea. Water temperature, pH, dissolved oxygen, and chlorophyll-a (Chl-a) showed high fluctuations in summer and autumn at all reservoirs, indicating the existence of seasonal effects. At all five reservoirs, the concentrations of suspended solids (SS) and total nitrogen (TN) fell under the "slightly bad" category and those of total organic carbon (TOC) fell under the "slightly good" category or higher, according to "the standard for living environment of lake water quality." Variations in the concentration ranges and degrees of change in SS, TN, and TOC among reservoirs were observed, indicating the influences of rainfall, surrounding environments, and seasonal changes. Daecheong and Namgang Dam showed high Chl-a concentrations in summer, indicating that the metabolism of microbial communities, such as algae, was active.