Magazine of the Korean Society of Agricultural Engineers (한국농공학회지)
- Volume 21 Issue 3
- /
- Pages.83-91
- /
- 1979
- /
- 0253-3146(pISSN)
A Study on the Optimum Field Preparation Procedures for the Proper Working Performances of Rice Transplanters
논 써레질한 후의 경과일수 및 담수심이 수도이앙기의 작업성능에 미치는 영향
Abstract
This study was conducted in order to find out the performance of rice transplanters in accordance with the change of the trans-planting days after pudding and the water depth flooding the paddy field at the time of transplanting : and thus to select the optimum paddy field preparation procedures for an efficient utilization of rice transplanters. The performance factors of the two different types of rice transplanters were measured during the first 6 consecutive days after puddling and with 3 different levels of water depth flooding the paddy fields. The results of this study were analysed and summarized as follows : 1. Wheel sinkage decreased very rapidly from 0 to 2 days after puddling and slowly from 3 to 5 days after puddling. 2. The depth of the test cone penetration decreased rapidly during the first few days after puddling. It was 17.8cm just after puddling, and decreased to 13.4cm one day after puddling. After 2 days, the rate of decrease was dampened, and after 5 days it kept constant value of 9.2cm. 3. Two days after puddling, the hill interval was 15.8cm (98.75% of the preset value) for broadcasted seedling rice transplanter with 3cm flooding depth : This value was the closest to the pre-adjusted value of 16cm. The general performance of broadcasted-seedling type rice transplanter was better than that of strip-seedling type rice transplanter. 4. Usually the working performance of a rice transplanter is evaluated with uniformity and adjustability of the hill intervals. The hill interval was the most uniform and closest to the pre-set value of 16cm when planted two days after puddling with 3cm of water depth. When it was inavoidable to plant 4 days after puddling with stripseedling type rice transplanter, it is advisable to let the water flooded somewhat deeper. 5. The percentage of missing hills including floating and burried seedlings was the highest just after puddling and ie decreased substancially until 3 days after puddling and then it increased again. Hence, the optimal time transplanting is to be between 2 and 3 days after puddling. 6. Better postures of planted seedlings were found when planter 2 days after puddling than 3 days after puddling. Six cm of flooding water depth always gave the best results with respect to the postures of planted seedlings. Broadcasted-seedling rice transplanter, in general, showed better posture of planted seedlings than did strip-seedling type rice transplanter. 7. Judging from the above results, the optimal conditions will be 3cm of flooding depth and transplanting between 2 and 3 days after puddling.
Keywords