• Title/Summary/Keyword: water damage

Search Result 2,808, Processing Time 0.037 seconds

Prediction of the Natural Frequency of Pile Foundation System in Sand during Earthquake (사질토 지반에 놓인 지진하중을 받는 말뚝 기초 시스템의 고유 진동수 예측)

  • Yang, Eui-Kyu;Kwon, Sun-Yong;Choi, Jung-In;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2010
  • It is important to calculate the natural frequency of a piled structure in the design stage in order to prevent resonance-induced damage to the pile foundation and analyze the dynamic behavior of the piled structure during an earthquake. In this paper, a simple but relatively accurate method employing a mass-spring model is presented for the evaluation of the natural frequency of a pile-soil system. Greatly influencing the calculation of the natural frequency of a piled structure, the spring stiffness between a pile and soil was evaluated by using the coefficient of subgrade reaction, the p-y curve, and the subsoil elastic modulus. The resulting natural frequencies were compared with those of 1-g shaking table tests. The comparison showed that the natural frequency of the pile-soil system could be most accurately calculated by constructing a stiffness matrix with the spring stiffness of the Reese (1974) method, which utilizes the coefficient of the subgrade reaction modulus, and Yang's (2009) dynamic p-y backbone curve method. The calculated natural frequencies were within 5% error compared with those of the shaking table tests for the pile system in dry dense sand deposits and 5% to 40% error for the pile system in saturated sand deposits depending on the occurrence of excess pore water pressure in the soil.

Determination of Floodplain Restoration Area Based on Old Maps and Analysis on Flood Storage Effects of Flood Mitigation Sections (고지도를 활용한 홍수터 복원 구역 선정 및 홍수완충공간의 홍수 저류효과 분석)

  • Dong-jin Lee;Un Ji;Sanghyuk Kim;Hong-Kyu Ahn;Eun-kyung Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.2
    • /
    • pp.40-49
    • /
    • 2023
  • To reduce the damage of extreme flooding caused by climate change and to create flood mitigation sections in a nature-friendly riparian area, it is necessary to restore the floodplain area by referring to the past floodplain section of the current inland waterfront area before the levee was built. This study proposed a method of selecting a location for floodplain restoration using old maps of the Geum River study section and analyzed the effect of flood level reduction through unsteady flow numerical simulations using the floodplain as a flood mitigation space. As a result of analyzing changes in the river areas using old maps, the river section was estimated to gradually reduce by 27.8% (1,059,380 m2) in 2020 compared to 1919, and it was found to have an effective storage capacity of 2,200,868 m3 when restored to offline storage. The flood level and discharge control effects analyzed based on HEC-RAS unsteady flow simulation were 16 cm and 219.01 m3/s, respectively, in the downstream cross-section. In the numerical simulation in this paper, the flood mitigation space was applied as an offline reservoir. The effect of reducing the flood level may differ if levee retreat/relocation is applied.

A Study on Electromagnetic Properties in OPC Mortar with Different Chloride Content (염화물을 혼입한 OPC 모르타르의 전자기 특성에 대한 연구)

  • Kwon, Seung-Jun;Na, Ung-Jin;Feng, M.Q.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.565-571
    • /
    • 2008
  • Recently, the evaluation technique using NDT (Nondestructive Technique : NDT) is widely utilized because it makes little damage on RC (Reinforced Concrete : RC) structures. The techniques using electromagnetic properties (EM properties) are also attempted for the evaluation of the performance of concrete which is nonmetallic. For the economic manufacturing of concrete material, sea-sand is often used as aggregate, however, chloride ion in concrete has direct effects on steel corrosion and EM properties. In this study, OPC mortar specimens with 5 different chloride amount (0.0, 0.6, 1.2, 2.4, and $3.6kg/m^3$) and 3 different water-cement ratios (45%, 55%, and 65%) are prepared in order to investigate the EM properties corresponding to concrete properties. The EM properties of conductivity and dielectric constant are measured in the frequency range over 0.2~20 GHz. To facilitate the comparison of EM properties with chloride content, average values are taken respectively for the conductivity and dielectric constant measured over the 5~20 GHz frequency range. According to the results of this experiment, dielectric constant and conductivity are increased with lower W/C ratio and larger amount of chloride content.

An Experimental Study for Characteristics Evaluation of Cement Mortar Using Infrared Thermography Technique (적외선 화상기법을 이용한 시멘트 모르타르 특성의 실험적 평가)

  • Kwon, Seung-Jun;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.53-59
    • /
    • 2010
  • Recently, NDTs (Non-Destructive Techniques) using infrared camera are widely studied for detection of damage and void in RC (reinforced concrete) structures and they are also considered as an effective techniques for maintenance of infrastructures. The temperature on concrete surface depends on material and thermal properties such as specific heat, thermal conductivity, and thermal diffusion coefficient. Different porosity on cement mortar due to different mixture proportions can show different heat behavior in cooling stage. The porosity can affect physical and durability properties like strength and chloride diffusion coefficient as well. In this paper, active thermography which uses flash for heat induction is utilized and thermal characteristics on surface are evaluated. Samples of cement mortar with W/C (water to cement ratio) of 0.55 and 0.65 are prepared and physical properties like porosity, compressive strength, and chloride diffusion coefficient are evaluated. Then infrared thermography technique is carried out in a constant room condition (temperature $20{\sim}22^{\circ}C$ and relative humidity 55-60%). The mortar samples with higher porosity shows higher residual temperature at the cooling stage and also shows reduced critical time which shows constant temperature due to back wall effect. Furthermore, simple equation for critical time of back wall effect is suggested with porosity and experimental constants. These characteristics indicate the applicability of infrared thermography as an NDT for quality assessment of cement based composite like concrete. Physical properties and thermal behavior in cement mortar with different porosity are analyzed in discussed in this paper.

Evaluation of Shear Deformation Energy and Fatigue Performance of Single-layer and Multi-layer Metal Bellows (단층 및 다층 금속 벨로우즈의 전단 변형 에너지 및 피로성능 평가)

  • Kyeong-Seok Lee;Jin-Seok Yu;Young-Soo Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Seismic safety of expansion joints for piping systems has been underscored by water pipe ruptures and leaks resulting from the Gyeongju and Pohang earthquakes. Metal bellows in piping systems are applied to prevent damage from earthquakes and road subsidence in soft ground. Designed with a series of corrugated segments called convolutions, metal bellows exhibit flexibility to accommodate displacements. Several studies have examined variations in convolution shapes and layers based on the intended performance to be evaluated. Nonetheless, the research on the seismic performance of complex bellows having multiple corrugation heights is limited. In this study, monotonic loading tests, cyclic loading tests, and fatigue tests were conducted to evaluate the shear performance in seismic conditions, of metal bellows with variable convolution heights. Single- and triple-layer bellows were considered for the experimentation. The results reveal that triple-layer bellows exhibit larger maximum deformation and fatigue life than single-layer bellows. However, the high stiffness of triple-layer bellows in resisting internal pressure poses certain disadvantages. The convolutions are less flexible at lower displacements and experience leakage at a rate related to the variable height of the convolutions in certain conditions. At lower deformation rates, the fatigue life is rated higher as the number of layers increase. It converges to a similar fatigue life at higher deformation rates.

Antibacterial Mechanism and Salad Washing Effect of Bitter Orange Extract Against Salmonella Typhimurium (광귤 추출물의 Salmonella Typhimurium에 대한 항균 메커니즘 및 샐러드 세척 효과)

  • Yoon-Mi Ji;Ji-Yun Bae;Chung-Hwan Kim;Se-Wook OH
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.273-280
    • /
    • 2024
  • In this study, the antibacterial activity and mechanisms of bitter orange extract, a natural antibacterial agent, were investigated, with a focus on its potential application in washing water for controlling Salmonella Typhimurium contamination of salad, a ready-to-eat food. The minimum inhibitory concentration (MIC) of bitter orange extract against S. Typhimurium was determined using the broth dilution method. Subsequently, S. Typhimurium was exposed to various concentrations of bitter orange extract (1/16 MIC-2 MIC) and growth curves were measured. Following treatment with bitter orange extract, we investigated its antibacterial mechanism by measuring intracellular reactive oxygen species (ROS) levels, alterations in membrane potential and integrity, and nucleic acid leakage in S. Typhimurium. Additionally, salads artificially contaminated with S. Typhimurium were treated with different concentrations of bitter orange extract using the dipping method for various durations to assess the reduction effect. The MIC of bitter orange extract against S. Typhimurium was 195.313 mg/L, and bacterial growth was completely inhibited at a concentration of 1 MIC. Furthermore, an increase in bitter orange extract concentration correlated with elevated intracellular ROS levels, membrane potential disruption, membrane damage, and nucleic acid release. Importantly, salads treated with bitter orange extract exhibited a significant reduction in S. Typhimurium counts compared to the control, and prolonged treatment times resulted in further reductions in bacterial counts. Bitter orange extract was more effective than sodium hypochlorite and can be used as a safer salad wash. These findings indicate the potential treatment of salads to prevent foodborne illnesses.

Current Distribution of Cottus pollux (Pisces: Cottidae) in Korea (한국산 민무늬둑중개 Cottus pollux (Pisces: Cottidae)의 분포 현황)

  • Bong Han Yun;Yong Hwi Kim;Ho Sung Lee;Eun Seon Seo;Sue Hyeung Lee;In-Chul Bang
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.2
    • /
    • pp.92-101
    • /
    • 2024
  • Current distribution of Korean Cottus pollux was investigated by conducting field surveys and environmental DNA analysis in September to November 2022 and March to May 2023. As a result of the field survey, the presence of C. pollux was confirmed in the uppermost stream of Hyeongsangang River, as well as in Deokdongcheon, Jeolgolcheon, and Hoamcheon Streams. The main habitat of C. pollux was the riffle area in the upper reaches of streams with clean water and boulder-cobble bottoms. As a result of environmental DNA analysis, the samples determined to be positive included all streams in which the presence of C. pollux was confirmed in the field survey. In addition, Namcheon and Singwangcheon Streams were determined to be positive, indicating potential as its habitats. Since C. pollux has a narrow distribution area and a small population size, continuous monitoring and conservation measures are required to immediately respond to damage caused by typhoons and river works, which are the main causes of habitat disturbance, in order to maintain a stable population.

Comparison of Antioxidant Activities of Water Extract from Dandelion (Taraxacum officinale) Aerial Parts, Roots, and Their Mixtures (서양민들레(Taraxacum officinale) 지상부, 지하부 및 혼합 추출물의 항산화 활성 비교)

  • Jung, Hyun Jung;Sung, Hea Mi;Kim, Kyung Mi;Shin, Yu-Rim;Wee, Ji-Hyang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1157-1164
    • /
    • 2015
  • The present investigation evaluated the antioxidant activities of water extracts from dandelion (Taraxacum officinale) aerial parts, roots, and mixed extracts. Mixed extract of T. officinale was a mixture of aerial parts and roots at 9:1 and 8:2 weight ratios. Extracts from aerial parts (DAE), roots (DRE), and mixture of aerial parts and roots (DME) were measured for cell viability and catalase activity in HepG2 cells, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and lipid peroxidation inhibitory activity. Cell viabilities of HepG2 cells treated with DAE, DRE, DME 8:2, and DME 9:1 against $H_2O_2$-induced oxidative damage were 63.4%, 54.6%, 76.7% and 83.4% at a concentration of $400{\mu}g/mL$, respectively. Catalase activity was highest in DME 9:1 (12.2 mU/min/mg protein) compared with DAE (9.0 mU/min/mg protein) and DRE (9.7 mU/min/mg protein). DPPH radical scavenging activity of DME showed a significantly lower $EC_{50}$ value than DAE ($EC_{50}$ value of DME $9:1=163.3{\mu}g/mL$, DME $8:2=172.4{\mu}g/mL$, and $DAE=173.7{\mu}g/mL$). Lipid peroxidation inhibitory activity of DME showed a significantly lower $EC_{50}$ value than DAE [$EC_{50}$ values of DME $(9:1)=454.4{\mu}g/mL$, DME $(8:2)=426.6{\mu}g/mL$, and $DAE=654.7{\mu}g/mL$]. The results indicate that a small amount of T. officinale roots increased antioxidant activity of aerial parts. Especially, a 9:1 mixture was more valuable than 8:2 mixture for industry.

The responses of Growth and Physiological traits of Acer triflorum on Calcium Chloride ($CaCl_2$) Concentration (염화칼슘 농도에 따른 복자기의 생장 및 생리적 반응 특성)

  • Kwon, Min-Young;Kim, Sun-Hee;Sung, Joo-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.500-509
    • /
    • 2014
  • To prevent freezing of the road by fallen snow, Calcium chloride($CaCl_2$) as a deicer is used to very often and it can be harmful to roadside trees. This study was conducted to investigate the effects of Calcium chloride($CaCl_2$) as a deicer on growth and physiological traits of Acer triflorum according to different concentration of $CaCl_2$. We measured growth, chlorophyll contents, gas exchangement characteristics, chlorophyll fluorescence and mineral nutrition concentration in plant and soil. The experimental group was composed of four treatments including 0mM(control), 9mM(0.5 %), 18mM(1.0 %), 54mM(3.0 %). Before germinating new shoot, the dissolution of $CaCl_2$ was irrigated twice interval of a week. At 30 days after treatment, all treatments decreased total cholorophyll content, photosynthetic rate, transpiration rate, stomatal conductance and photochemical efficiency($F_v/F_m$) with increasing concentration of $CaCl_2$ and especially, they significantly reduced in 3.0 % treatment. In contrast, chlorophyll a/b ratio increased with an increase of $CaCl_2$ concentration and water use efficiency increased in 1.0 % and 3.0 % treatments. At 50 days after treatment, all treatments were decreased in chl a, chl b, total chlorophyll content, carotenoid content, photosynthetic capacity, photochemical efficiency($F_v/F_m$) and quantum yield of photosystem II(${\Phi}_{PSII}$) compared with control and 3.0 % treatments were withered. $Ca^{2+}$ and $Cl^-$ were accumulated in leaves and soil, which inhibited water absorption and electron transport and it caused the reduction of height growth rate more than 50 %. Although there was a little difference according to time and $CaCl_2$ concentration, all treatments decreased in growth rate and physiological activity slowed down. As time passed, these results got worse. Therefore we need to take a measure earlier in order to minimize damage of trees.

Estimation of the Moisture Maximizing Rate based on the Moisture Inflow Direction : A Case Study of Typhoon Rusa in Gangneung Region (수분유입방향을 고려한 강릉지역 태풍 루사의 수분최대화비 산정)

  • Kim, Moon-Hyun;Jung, Il-Won;Im, Eun-Soon;Kwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.697-707
    • /
    • 2007
  • In this study, we estimated the PMP(Probable Maximum Precipitation) and its transition in case of the typhoon Rusa which happened the biggest damage of all typhoons in the Korea. Specially, we analysed the moisture maximizing rate under the consideration of meteorological condition based on the orographic property when it hits in Gangneung region. The PMP is calculated by the rate of the maximum persisting 12 hours 1000 hPa dew points and representative persisting 12 hours 1000 hPa dew point. The former is influenced by the moisture inflow regions. These regions are determined by the surface wind direction, 850 hPa moisture flux and streamline, which are the critically different aspects compared to that of previous study. The latter is calculated using statistics program (FARD2002) provided by NIDP(National Institute for Disaster Prevention). In this program, the dew point is calculated by reappearance period 50-year frequency analysis from 5% of the level of significant when probability distribution type is applied extreme type I (Gumbel distribution) and parameter estimation method is used the Moment method. So this study indicated for small basin$(3.76km^2)$ the difference the PMP through new method and through existing result of established storm transposition and DAD(Depth-Area-Duration). Consequently, the moisture maximizing rate is calculated in the moisture inflow regions determined by meteorological fields is higher $0.20{\sim}0.40$ range than that of previous study. And the precipitation is increased $16{\sim}31%$ when this rate is applied for calculation.