• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.04 seconds

Finite Element Analysis of the Effect of Chloride Ion on the Coastal Concrete Structure with Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 해양콘크리트 구조물의 염분침투해석)

  • 여경윤;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.945-950
    • /
    • 2000
  • Coastal concrete structure is harmed by physical and chemical action of sea water, impact load, meteorological effect and etc. especially, premature reinforcement corrosion in concrete exposed to sea water has an important problem. In this study, the behavior of chloride ions penetrated through the coastal concrete structure with ordinary portland cement or ground granulated blast furnace slag(GGBFS) was modeled. The physicochemical processes including the diffusion of chloride and the chemical reaction of chloride ion with calcium silicate hydrate and the other constituents of hardened cement paste such as$C_3A$ and $C_4AF$were analyzed by using the Finite Element Method. From analysis result, the corrosion of concrete structure with GGBFS begins 1.69~1.76 times later than that of concrete structure with ordinary portland cement.

Study on Surface Treatment and Test over the Barrel of Small Arms (개인화기 총열 표면처리 및 시험에 관한 연구)

  • Chae, Je-Wook;Kim, In-Woo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.722-727
    • /
    • 2004
  • This paper includes the comparative study between Cr plating and nitriding process with an aim at improving corrosion, wear and maintainability for KNR(Korean Next Generation Rifle) 5.56mm barrel. The endurance test was conducted to compare the performance of standard barrel, Cr plating barrel and nitriding barrel. Main activities are described as follows; optimal Cr plating and nitriding process set-up for KNR 5.56mm barrel; durability test of each barrel(20,000 rounds); salt water immersion test; dispersion, initial velocity, inner diameter data acquisition. According to the results of this firing test, Cr plating barrel is superior to standard barrel and nitriding barrel in view of corrosion, wear and maintainability

  • PDF

Electrical Measurement of SOx Dew Point (SOx노점의 전기적 측정)

  • Chun, Y.N.;Yong, K.J.;Chae, J.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.600-610
    • /
    • 1995
  • When combustion gas is cooled down below the dew point of sulfuric acid vapor in the heat recovery systems, condensation occurs. Since the condensed sulfuric acid solution causes low-temperature corrosion in materials, it is important to measure the SOx dew point by electric measurement. In this study, two kinds of probes having electric gaps of 1mm or 2mm were used. and experiments were carried out by the parameters of sulfuric acid vapor and water vapor concentration. The changes of electric current caused by sulfuric acid condensed on the surface of probe according to the cooling rate and the probe head surface temperature were sudied. The opimum cooling rate was decreased with the increasing of water vaper concentration regardless of sulfuric acid concentration. The sensitivity of electric current is improved for the narrower gap(1mm) of ring electrodes, but it rarely affects the SOx dew point measuring of different probes according to the change of cooling rate.

  • PDF

Study on Surface Treatment over the Barrel of Small Arms (소구경 총열 표면처리에 관한 연구)

  • 채제욱;김인우;이영신
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • This paper includes the comparative study between Cr plating and nitriding process with an aim at improving corrosion, wear and maintainability for KNR(Korean Next Generation Rifle) 5.5mm barrel. The endurance test was conducted to compare the performance of standard barrel, Cr plating barrel and nitriding barrel. Main activities are described as follows; optimal Cr plating and nitriding process set-up for KNR 5.56mm barrel; durability test of each barrel(20,000 rounds); salt water immersion test; dispersion, initial velocity, inner diameter data acquisition. According to the results of this firing test, Cr plating barrel is superior to standard barrel and nitriding barrel in view of corrosion, wear and maintainability.

A Study on the Application of CRUDTRAN Code in Primary Systems of Domestic Pressurized Heavy-Water Reactors for Prediction of Radiation Source Term

  • Song, Jong Soon;Cho, Hoon Jo;Jung, Min Young;Lee, Sang Heon
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.638-644
    • /
    • 2017
  • The importance of developing a source-term assessment technology has been emphasized owing to the decommissioning of Kori nuclear power plant (NPP) Unit 1 and the increase of deteriorated NPPs. We analyzed the behavioral mechanism of corrosion products in the primary system of a pressurized heavy-water reactor-type NPP. In addition, to check the possibility of applying the CRUDTRAN code to a Canadian Deuterium Uranium Reactor (CANDU)-type NPP, the type was assessed using collected domestic onsite data. With the assessment results, it was possible to predict trends according to operating cycles. Values estimated using the code were similar to the measured values. The results of this study are expected to be used to manage the radiation exposures of operators in high-radiation areas and to predict decommissioning processes in the primary system.

Development of probabilistic primary water stress corrosion cracking initiation model for alloy 182 welds considering thermal aging and cold work effects

  • Park, Jae Phil;Yoo, Seung Chang;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1909-1923
    • /
    • 2021
  • We experimentally investigated the effects of thermal aging and cold work on the microstructure, mechanical properties, and primary water stress corrosion cracking (PWSCC) initiation time for Alloy 182 welds. The effects of thermal aging and cold work on the PWSCC initiation time of Alloy 182 were modeled based on the plastic energy concept and the PWSCC initiation data of this study and previous reports by considering censored data. Based on the results, it is estimated that the PWSCC resistance of the Alloy 182 weld firstly increases and then decreases with thermal aging time when the applied stress is kept constant.

Optimization of Process Parameters for Dry Film Thickness to Achieve Superior Water-based Coating in Automotive Industries

  • Prasad, Pranay Kant;Singh, Abhinav Kr;Singh, Sandeep;Prasad, Shailesh Kumar;Pati, Sudhanshu Shekher
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.121-129
    • /
    • 2022
  • A study on water-based epoxy coated on mild steel using the electroplating method was conducted to optimize the process parameters for dry film thickness to achieve superior paint quality at optimal cost in an automotive plant. The regression model was used to adjust various parameters such as electrode voltage, bath temperature, processing time, non-volatile matter, and surface area to optimize the dry film thickness. The average dry film thickness computed using the model was in the range of 15 - 35 ㎛. The error in the computed dry film thickness with reference to the experimentally measured dry film thickness value was - 0.5809%, which was well within the acceptable limits of all paint shop standards. Our study showed that the dry film thickness on mild steel was more sensitive to electrode voltage and bath temperature than processing time. Further, the presence of non-volatile matter was found to have the maximum impact on dry film thickness.

Study on Hardness and Corrosion Resistance of Magnesium by Anodizing and Sealing Treatment With Nano-diamond Powder (양극산화와 나노 다이아몬드 분말 봉공처리에 의한 마그네슘의 경도와 부식에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.260-265
    • /
    • 2014
  • In this study, in order to increase surface ability of hardness and corrosion of magnesium alloy, anodizing and sealing with nano-diamond powder was conducted. A porous oxide layer on the magnesium alloy was successfully made at $85^{\circ}C$ through anodizing. It was found to be significantly more difficult to make a porous oxide layer in the magnesium alloy compared to an aluminum alloy. The oxide layer made below $73^{\circ}C$ by anodizing had no porous layer. The electrolyte used in this study is DOW 17 solution. The surface morphology of the magnesium oxide layer was investigated by a scanning electron microscope. The pores made by anodizing were sealed by water and aqueous nano-diamond powder respectively. The hardness and corrosion resistance of the magnesium alloy was increased by the anodizing and sealing treatment with nano-diamond powder.

An Experimental Study on the Salt Resistance Properties with Concrete Materials under Marine Exposure Environment (I) (해양환경에 폭로한 콘크리트의 내염특성에 대한 실험적 연구 (I))

  • 신도철;김영웅;김용철;김동철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.51-56
    • /
    • 2002
  • Protection against salt attack in seawater is obtained by using a dense, quality concrete with a low water-cement ratio, and a components appropriate for producing concrete having the needed salt resistance. The objective of this study is to evaluate the feature of corrosion with using the various concrete materials under marine exposure environment. According to the test results, slag powder and anti -corrosion inhibitor showed high chloride resistance effect. Also concre crack have an influence on corrosion of steel in spite of mixed design for salt resistance concrete. The requirement for low permeability is essential not only to delay the effect of salt attack, but also to afford adquate protection to reinforcement with admixtures.

  • PDF

Fracture Mechanics Analysis of Steam Generator Tubes after Shot Peening (숏피닝된 증기 발생기 전열관의 파괴역학적 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Jhung, Myung-Jo;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.732-738
    • /
    • 2004
  • One of the main degradation mechanisms in steam generator tubes is stress corrosion cracking induced by residual stress. The resulting damages can cause tube bursting or leakage of the primary water which contains radioactivity. Shot peening technique has been used to prevent stress corrosion crack growth in steam generator tubes. In order to investigate the shot peening effect on stress corrosion cracking stress intensity factors are calculated for the semi-elliptical surface crack which is located in residual stress region. The residual stress distribution in steam generator tubes is obtained from the simple model proposed by Frederick et al.