• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.025 seconds

Evaluation of Corrosion Resistance of Anti-Corrosive Paint by Investigation of Diffusion Limiting Current Density (확산한계전류밀도 고찰에 의한 방청도료의 내식성평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Lee, Myung-Hoon;Lee, In-Won;Park, Hyun;Chun, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.64-68
    • /
    • 2009
  • It has been observed that coated steel structures deteriorate more rapidly than the designed lifetime due to acid rain caused by air pollution, etc. Therefore, improving the corrosion resistance of anti-corrosive paint is very important in terms of safety and the economic point of view. In this study, the corrosion resistance of five kinds of anti-corrosive paints, including the Acryl, Fluorine, and Epoxy resin series, were investigated with electrochemical methods, such as corrosion potential measurements, polarization curves, diffusion limiting current density, etc. As a result, the corrosion resistance of the F101 specimen with the fluorine resin series was found to be superior to the other specimens, while E100 with the epoxy resin series also showed a somewhat good corrosion resistance. Furthermore, it was observed that the amount of water and oxygen entering the inner side of a painted film increased with an increase in immersion time, irrespective of the kind of resin series. However, the oxygen diffusion limiting current density of a specimen with good corrosion resistance was relatively decreased compared to other specimens, because of the difficulty of oxygen diffusion penetrating to the inner side of the film. Consequently it is suggested that we can qualitatively evaluate the corrosion resistance of an anti-corrosive paint by measuring the diffusion limiting current density as an electrochemical method.

Characteristics of Leachate from Blast Furnace Slag and Its Impacts on Environment (고로(高爐) 슬래그 침출수(浸出水)의 특성(特性)과 환경(環境)에 미치는 영향(影響))

  • Choi, Eui So;Kwon, Soo Youl;Lee, E.C.;Park, W.M.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.55-60
    • /
    • 1987
  • Impacts on ground water quality, growth of crops, and degree of corrosion due to the leachate produced from the contact of rain water with blast furnace slag as an aggragate used for roadway pavement were evaluated. Results from slag and soil leaching tests indicated pH, $SO_4$, $Ca^{{+}{+}}$ and $Mg^{{+}{+}}$ concentrations of ground water could be increased due to the use of slag, and pot test suggested slag would not adversely affect growth of Raphanus Satius L niger. Accelerated corrosion test revealed that slag leachate had a tendency to increase corrosion on cast iron at the beginning, however the degree of corrosion became similar to that experienced in soil after about 50 days at 50 degrees in centigrade.

  • PDF

A Study on the Possibility of using Light-Wall Stainless Steel Pipe for Water-Based Fire Protection System (수계소화설비용 경량벽 스테인리스 강관의 사용가능성 평가에 관한 연구)

  • Nam, Jun-Seok;Won, Sung-Yeun;Kim, Yong-Ho;Min, Kyung-Tak;Park, Seung-Min
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.94-101
    • /
    • 2010
  • The pipes using in water-based fire protection systems are used steel pipes for ordinary piping, carbon steel pipes for pressure service, copper and copper alloy seamless pipes and tubes, etc. By last buildings of high-rising, complexity, in fire protection systems, the corrosion resistance, easy construction, lightweight and cost-effective use of the pipes is being considered. Among the pipes, the possibility of used for fire protection system being used in the existing copper pipe of material properties, strength, corrosion resistance, heat resistance through and compare the performance was evaluated. As a result of that assessment light gauge stainless steel pipes for ordinary piping (KS D 3595) at a water pressure of less than 1.2 MPa can be used in sufficient physical properties, strength, corrosion resistance, heat resistance and have been observed.

A Study of Hydrogen Embrittlement Limit Potential of Cu-Containing High Strength Low Alloy Steel for Marine Structure by Potentiostatic SSRT Method (정전위 SSRT법에 의한 해양구조물용 Cu함유 고장력저합금강의 수소취성한계전위 규명에 관한 연구)

  • 김성종;박태원;심인옥;김종호;김영식;문경만
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.182-190
    • /
    • 2001
  • A marine structural material was well known to have high tensile strength, good weldability and proper corrosion resistance. Cu-containing high strength low alloy(HSLA) steel was recently developed for their purposes mentioned above. And the steel is free about preheating for welding, therefore it is reported that shipbuilding cost by using it can be saved more or less. However the marine structural materials like Cu-containing HSLA steel are being generally adopted with cathodic protection method in severe corrosive environment like natural sea water but the high strength steel may give rise to Hydrogen Embrittlement due to over protection at high cathodic current density for cathodic protection. In this study Cu-containing HSLA steel using well for marine atructure was investigated about the susceptibility of Hydrogen Embrittlement as functions of tensile strength, strain ratio, fracture time, and fracture mode, etc. and an optimum cathodic protection potential by slow strain rate test(SSRT) method as well as corrosion properties in natural sea water. And its corrosion resistance was superior to SS400 steel, but Hydrogen Embrittlement susceptibility of Cu-containing HSLA steel was higer than that of SS400 steel. However Hydrogen Embrittlement of its steel by SSRT method was showed with pheonomena such as decreasing of fracture time, strain ratio and fracture mode of QC(quasi-cleavage). Eventually it is suggested that an optimum cathodic protection potential not presenting Hydrogen Embrittlement of Cu-containing of HSLA steel by SSRT method was from-770mv(SCE) to - 900mV(SCE)under natural sea water.

  • PDF

The Study on Corrosion Characteristics of Heat Exchanger Tube for Gas Absorption Refrigeration & Hot Water System (가스흡수식 냉온수기 열교환기용 세관의 부식특성에 관한 연구)

  • Jeong Ki Cheol
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.92-97
    • /
    • 2002
  • This paper was studied on corrosion characteristics of gas absorption refrigeration & hot water system using $LiBr-H_2O$ working fluids. In the $62\%$ lithium bromide solution at $60^{\circ}C$, polarization test of Cu, $10\%$ cupronickel($90-10\%$ Cu-Ni) and $30\%$ cupronickel($70-30\%$ Cu-Ni) tube was carried out. And polarization behavior, polarization resistance characteristics, open circuit potential, anodic polarization of heat exchanger tube for gas absorption refrigeration & hot water system were considered. The main results are as following: 1) Polarization resistance of heat exchange tubes appears high in order of $30\%$ cupronickel tube > $10\%$ cupronickel tube > Cu tube. B) Open circuit potential of cupronickel tube is more noble than that of Cu tube, and corrosion current density of cupronickel is controlled than Cu tube. 3) Potential of passive region of $30\%$ cupronickel tube is more wide than that of $10\%$ cupronickel tube, and the passivation critical current of $30\%$ cupronickel tube is lower than that of $10\%$ cupronickel tube.

  • PDF

A study on the condition assessment of large diameter water valves using non-destructive technologies (비파괴 기술을 이용한 대구경 수도용 밸브의 상태평가에 관한 연구)

  • Ho-Min Lee;Hyun-yong Choi;Suwan Park;Tae-min Oh;Chae-Min Kim;Cheol-Ho Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.215-229
    • /
    • 2023
  • In this study, non-destructive technologies that can be applied to evaluate the integrity of valve materials, safety against internal pressure caused by corrosion, and the blocking function of large-diameter water valves during operation without requiring specimen collection or manpower entering the inside of the valve were tested to assess the reliability of the technologies and their suitability for field application. The results showed that the condition of the graphite structure inside the valve body can be evaluated directly through the optical microscope in the field without specimen collection for large-diameter water butterfly valves, and the depth of corrosion inside the valve body can be determined by array ultrasound and the tensile strength can be measured by instrumented indentation test. The reliability of each of these non-destructive techniques is high, and they can be widely used to evaluate the condition of steel or cast iron pipes that are significantly smaller in thickness than valves. Evaluation of blocking function of the valves with mixed gas showed that it can be detected even when a very low flow rate of mixed gas passes through the disk along with the water flow. Finally, as a result of evaluating the field applicability of non-destructive technologies for three old butterfly valves installed in the US industrial water pipeline, it was found that it is possible to check the material and determine the suitability of large-diameter water valves without taking samples, and to determine the corrosion state and mechanical strength. In addition, it was possible to evaluate safety through the measurement results, and it is judged that the evaluation of the blocking function using mixed gas will help strengthen preventive response in the event of an accident.

Performance analysis of waterproofing corrosion as effecting oil (유류성분이 지하구조물의 방수층 침식에 미치는 영향평가)

  • 김영찬;이정윤;권시원;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.91-95
    • /
    • 2004
  • Utilization of underground construction if increased by the large size & skycraperlization of building recently. Therefore. waterproof dependence of underground construction is risen. However, water leakage was happened by rupture by concrete conduct, drying shrinkage. form tie. In underground environment soil class, degradation of waterproofing is showing to corrode by oil. An odious smell by oil, promotion evil of reinforcing rod corrosion, declination of durability can happen. Then, practical un degree of underground spare becomes low, Because oil or water permeates by construction by degradation to waterproof class corrode by oil, is considered to affect evil durability of construction.

  • PDF

A Study on a Performance evaluation for Quality Liguid Siliceous of waterproof agent using on the concrete Structure (콘크리트구조물에 적용하는 액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • Kang Hyo Jin;Kwon Shi-Won;Oh Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.184-187
    • /
    • 2004
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs to improve durability of structure. This study separately examined physical and chemical specific of quality liguid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

Inhibition Effect of Amino Acids on the Corrosion of Aluminum in Artificial Sea Water (인공해수에서 알루미늄의 부식에 미치는 아미노산의 부식억제효과)

  • Chon, Jung-Kyoo;Kim, Youn-Kyoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.311-316
    • /
    • 2009
  • Inhibition effects of alanine and methionine on the corrosion of aluminum were investigated in artificial sea water. Based on the low coverage of alanine and methionine we suggested that alanine and methionine adsorption process in aluminum surface is Langmuir isotherm and the carboxyl ion of amino acids seems to be adsorbed on Al.

PFM APPLICATION FOR THE PWSCC INTEGRITY OF Ni-BASE ALLOY WELDS-DEVELOPMENT AND APPLICATION OF PINEP-PWSCC

  • Hong, Jong-Dae;Jang, Changheui;Kim, Tae Soon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.961-970
    • /
    • 2012
  • Often, probabilistic fracture mechanics (PFM) approaches have been adopted to quantify the failure probabilities of Ni-base alloy components, especially due to primary water stress corrosion cracking (PWSCC), in a primary piping system of pressurized water reactors. In this paper, the key features of an advanced PFM code, PINEP-PWSCC (Probabilistic INtegrity Evaluation for nuclear Piping-PWSCC) for such purpose, are described. In developing the code, we adopted most recent research results and advanced models in calculation modules such as PWSCC crack initiation and growth models, a performance-based probability of detection (POD) model for Ni-base alloy welds, and so on. To verify the code, the failure probabilities for various Alloy 182 welds locations were evaluated and compared with field experience and other PFM codes. Finally, the effects of pre-existing crack, weld repair, and POD models on failure probability were evaluated to demonstrate the applicability of PINEP-PWSCC.