• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.029 seconds

Effect of Cathodic Protection on Erosion-Corrosion Control in Alloy Metals of Marine Bearing (舶용 베어링 합금재의 침식-부식억제에 미치는 음극방식의 효과)

  • 임우조;이진열
    • Tribology and Lubricants
    • /
    • v.11 no.1
    • /
    • pp.58-65
    • /
    • 1995
  • When marine lubricating oil began to be emulsified and oxidized through ingressive water that have leaked from cooling pump seal systems, cooler, purifier system and piping system, the cavitation erosion-corrosion in alloy metals of bearings remains to the various troublesome problem at effective engine performance. Therefore, applied the cathodic protection to the control test of cavitation erosion-corrosion, and appointed the marine system oil containing 3% sea water as test environments, with different conductibility. Also, used the piezoelectric vibrator with 20 KHz, 24 $\mu$m as the cavity generation apparatus, and examined the weight loss, potential value, current density etc. in specimens with those condition. According to this testing data, investigated influence of cathodic protection on the control characteristics of cavitation erosion-corrosion, and will serve those as an elementary design data of marine bearing.

Steel Pile Corrosion in Potential Acid Sulfate Soil (잠재성 특이산성토중 강관말뚝의 부식)

  • Lee, Seung-Heon;Park, Mi-Hyeun;Yoon, Kyung-Sup
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.559-562
    • /
    • 2003
  • The results and discussions of surveyed case site at constructed steel pile in potential acid sulfate soil were as follows. Topography at surveyed site was local alluvial valley and that site soils was classified as BanGog and YuGye series as detailed soil surveyed results in RDA and soil texture was Clay/Clay Loam. Soils pH was neutral, which was average 7.5 but much decreased to average 4.2 after $H_2O_2$ treatment. Organic matter and sulfate ions contents were very rich. The corrosion was severe at ground water fluctuation depth. Deposits colored black were attached to steel pile surface, which because of violent reaction in treatment HCI solution, were guessed as corrosion products (FeS) reduced by sulfate reducing bacteria(SRB). Consequently, main cause was thought microbiologically induced corrosion at this site where there is ground water fluctuation occurring oxidation and reduction reactions in turn and the soil is potential acid sulfate soil.

  • PDF

A study on corrosion mechanism of water steel pipes using SEM (SEM을 이용한 상수도 금속관 부식거동에 관한 연구)

  • 황상용
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.53-60
    • /
    • 2002
  • This experiment was performed to investigate the characteristics of corrosion mechanism of water steel pipes using SEM(Scanning Electron Microscope) from March 1. 2002 to November 30. The characteristics shown in these results can be summarized as the following: 1. When I investigated to the characteristics of iron pipes and zinc pipes using a SEM, I could be found that there was a distintion in interface between an iron pipe and the scale, and that a zinc pipe wears a dark color. 2. I find much rate of $Fe_2O_3$ and a little rate of FeS as corrosion products, but I hardly find $FeCO_3$without carbon. 3 It was found that the oxide corrosion rate was 0.2~0.3mm/year. And then A-1 was 0.323mm/year that was very high.

Research of Energy Efficiency for Power Plant Performance Improvement (발전성능 향상을 위한 에너지 효율 연구)

  • Lee, Jae-Keun;Moon, Jeon-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.3
    • /
    • pp.220-226
    • /
    • 2010
  • The heat transfer performance improvement in closed cooling water system of an electric power generation can be achieved by a corrosion control using corrosion inhibitors. The effect of trisodium phosphate and sodium nitrite upon carbon steel at various $Cl^{-1}$ ion containing water concentrations was examined by an integrated corrosion monitoring system. Nitrite was found to be the most effective inhibitor among tested inhibitors for carbon steel. The inhibiting process is considered as adsorption of nitrite ions in oxide layer which form a passive film on the carbon steel surface.

Corrosion and Wear Properties of Cold Rolled 0.087% Gd-Lean Duplex Strainless Steels for Neutron Absorbing Material (중성자 흡수소재용 냉간 압연된 Gd-저합금 이상 스테인레스 강의 부식 및 마모성)

  • Baek, Yeol;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.123-123
    • /
    • 2015
  • 0.087 wt.% Gd-lean duplex stainless steels were inert arc-melted and cast in a mold. The micro-hardnesses of the rolling, transverse, short transverse directions were 258.5, 292.3, 314.7 HV, respectively. The 33% cold rolled specimen had the crystallographic texture that mainly (100) pole was concentrated to normal direction and (110) pole was concentrated in the center of normal and rolling directions. The corrosion potential and corrosion rate in artificial sea water were in the range of $105.6-221.6mV_{SHE}$, $0.59-1.06mA/cm^2$, respectively. The friction coefficient and wear loss of the 0.087 wt.% Gd-lean duplex stainless steels in artificial sea water were about 67% and 65% lower than in air, whereas, the wear efficiency was 22% higher. The corrosion and wear behaviors of the 0.087 wt.% Gd-lean duplex stainless steels significantly depended on the gadolinium phases.

  • PDF

Study on the Surface Properties of Arc Ion Plated Ti-Al-Cr-N Thin Layers (아크 이온 증착된 Ti-Al-Cr-N 도포층의 표면 물성 연구)

  • Gang, Bo-Gyeong;Choe, Yong;Gwon, Sik-Cheol;Zang, Shi-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.125-125
    • /
    • 2015
  • Ti-Al-Cr-N thin layer was prepared on Fe-Si thin sheet by arc ion plating to improve corrosion and mechanical properties. The compositions ratios of Fe : Cr : Al : Ti : Si : N of the thin layers at $500^{\circ}C$ was 1.24 : 0.56 : 36.82 : 32.72 : 0.59 : 28.07 [wt.%], respectively. The higher arc ion plating temperature was, the higher corrosion resistance and nano-hardness were observed due to chromium content. Corrosion potential and corrosion rate in artificial sea water of the coating layer were in the range of $-39mV_{SHE}$ and $2mA/cm^2$, respectively. Passivity was not observed in the artificial sea water. Nano-hardnesses of the thin layers was increased by adding Cr from 23.6 to 25.8 [GPa]. The friction coefficients and fatigue limits of the layers were 0.388, 0.031, respectively.

  • PDF

Ni Plating Technology for PWR Reactor Vessel Cladding Repair

  • Hwang, Seong Sik;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.190-195
    • /
    • 2019
  • SA508 low-alloy steel for a reactor vessel was exposed to primary water in a pressurized water reactor (PWR) plant because the cladding layer of type 309 stainless steel for the RPV was removed, due to an accident in which the detachment of the thermal sleeve occurred. The major advantage of the electrochemical deposition (ECD) Ni plating technique is that the reactor pressure vessel can be repaired without significant thermal effects, and Ni has solid corrosion resistance that can withstand boric acid. The corrosion rate assessment of the damaged part was performed, and its trend was analyzed. Essential variables of the Ni plating for repair of the damaged part were derived. These conditions are applicable variables for the repair plating device, and have been carefully adjusted using the repair plating device. The process for establishing ASME technical standards called Code Case N-840 is described. The process of developing Ni-plating devices, and the electroplating procedure specification (EPS) are described.

Effects of the Solid Solution Heat Treatment on the Corrosion Resistance Property of SSC13 Cast Alloy (SSC13 주강품의 내부식특성에 미치는 고용화 열처리 영향)

  • Kim, Kuk-Jin;Lim, Su-Gun;Pak, S.J.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.93-98
    • /
    • 2015
  • Recently, Stainless steels have been increasingly selected as the fitting or the valve materials of water pipes as the human health issue is getting higher and higher. Therefore, the connectors attached at pipes to deliver water are exposed to more severe environments than the pipes because crevice or galvanic corrosion is apt to occur at the fittings or the valves. Effects of the solid solution annealing, cooling rate after this heat treatment, and passivation on the corrosion properties of the shell mold casted SSC13 (STS304 alloy equivalent) were studied. The heating and quenching treatment more or less reduced hardness but effectively improved corrosion resistance. It was explained by the reduction of delta ferrite contents. Independent of heat treatment, the chemical passivation treatment also lowered corrosion rate but the improvement of corrosion resistance depended on temperature and time for passivation treatment indicating that the optimum conditions for passivation treatment were the bath temperature of $34^{\circ}C$ and operating time of 10 minutes. Therefore it is suggested that the corrosion resistance of SSC13 can be effectively improved with the heat treatment, where SSC13 is heated for 10 minutes at $1120^{\circ}C$ and quenched and passivation treatment, where SSC13 is passivated for at least 10 seconds at $34^{\circ}C$ nitric acid solution.

An Electrochemical Study on the Corrosion Resistance Improvement of Galvanizing Steel by Dipping to Solution with Inhibitor (인히비터 첨가용액의 침지에 의한 용융아연도금 강판의 내식성 개선에 관한 전기화학적 연구)

  • Moon, Kyung-Man;Cho, Hwang-Rae;Kang, Tae-Young;Lee, Myung-Hoon;Kim, Yun-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2007
  • Recently, galvanizing method is predominantly being used not only a economical point of view but also due to it s stability and long life. For example, guard rail of high way, all kinds of structures for ship etc. were protected with galvanizing and demand of galvanized structural materials was being increased with more and more. However, galvanized structures were inevitably being deteriorated with time eventually because they were corroded with solution of galvanizing film and exfoliation of it s film in the present severe corrosive environment. Therefore, it is necessary to improve the corrosion resistance of the galvanizing film through various methods such as variation of chemical composition of galvanizing bath, chromate treatment and coating treatment. In this study, three test specimens such as pure galvanizing, galvarium, and chromate treatment were submerged at tap water with inhibitor addition. And the effect of their corrosion resistance improvement was comparatively investigated with electrochemical method. Corrosion current density of the galvanized steel was the largest among three specimens, however, the galvarium steel showed the lowest corrosion current density. Futhermore, these three kinds of test specimens indicated considerably excellent corrosion resistance by dipped at tap water with inhibitor addition. Especially, the galvanized steel showed the best effect of corrosion resistance improvement than other test specimens.

Synergistic Effect of Molybdate and Monoethanolamine on Corrosion Inhibition of Ductile Cast Iron in Tap Water

  • Kim, K.T.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • A synergistic effect was observed in the combination of nitrite and ethanolamines. Ethanolamine is one of the representative organic corrosion inhibitors and can be categorized as adsorption type. However, nitrosamines can form when amines mix with sodium nitrite. Since nitrosamine is a carcinogen, the co-addition of nitrite and ethanolamine will be not practical, and thus, a non-toxic combination of inhibitors shall be needed. In order to maximize the effect of monoethanolamine, we focused on the addition of molybdate. Molybdate has been used to alternate the addition of chromate, but it showed insufficient oxidizing power relative to corrosion inhibitors. This work evaluated the synergistic effect of the co-addition of molybdate and monoethanolamine, and its corrosion mechanism was elucidated. A high concentration of molybdate or monoethanolamine was needed to inhibit the corrosion of ductile cast iron in tap water, but in the case of the co-addition of molybdate and monoethanolamine, a synergistic effect was observed. This synergistic effect could be attributed to the molybdate that partly oxidizes the metallic surface and the monoethanolamine that is simultaneously adsorbed on the graphite surface. This adsorbed layer then acts as the barrier layer that mitigates galvanic corrosion between the graphite and the matrix.