• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.029 seconds

Study on characteristic for Larson's ratio of water treatment plants (국내 정수장의 Larson's ratio 특성에 관한 연구)

  • Min, Byung-dae;Chung, Hyen-mi;Ahn, Kyung-hee;Park, Ju-hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.579-586
    • /
    • 2016
  • In many countries in order to manage corrosion of water treatment process, it is currently using Langelier index (LI). However, management of the Larson's ratio (LR) to compare corrosion management and LI which can be generated by the water treatment process is required. In this study, in order to ensure data LR, factors associated with the actual corrosion resistance of water treatment plant was measured. Using the measured data, the model equation can be estimated alkalinity, and using the statutory water quality data, LR and alkalinity is estimated. At comparison of the measured value and estimated value of alkalinity, it appeared in $R^2$ = 0.629, using the statutory water quality data and estimated alkalinity model, LR and alkalinity (Whole water treatment plants : 472) is estimated. Concentration of estimated alkalinity is 0.5 mg/L to 107.5 mg/L (average : 23.2 mg/L), and LR is 0.1 to 10 (average : 1.3). At tendency to corrosion of investigated LR, "No metal tendency" (>0.5) is 39 water treatment plants, 8.26 %, and "corrosion metal tendency" is 433 water treatment plants, 91.74%.

Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe (ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구)

  • Kim, Jae-Seong;Kim, Yong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

Effect on Corrosion Characteristics of SS 400 Steel by Alkali Water pH from Electrolysis of City Water (수돗물의 전기분해에 의해서 생성된 알카리수의 pH가 SS 400강의 부식특성에 미치는 영향)

  • Moon, Kyung-Man;Ryoo, Hae-Jeon;Kim, Yun-Hae;Jeong, Jae-Hyun;Baek, Tae-Sil
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.248-255
    • /
    • 2017
  • Many rivers and seas have been affected by environmental contamination. Therefore, city water supplies often require a high-degree purification treatment to provide safe drinking water. However, in order to achieve a high-degree purification treatment, a large amount of chlorine has to be added to sterilize city drinking water. The added chlorine reacts chemically with water and forms hypochlorous and chlorine ions. The hypochlorous ionizes with hypochlorous ions and hydrogen ions. As a result, the city water contains a large amount of chlorine ion. As such, when city water is used with domestic boilers, many kinds of heat exchangers, and the engines of vehicle and ships, there are often corrosion problems. In this study, alkali water was electrochemically made by electrolysis of city water, and corrosion properties between alkali and city water were investigated with an electrochemical method. Most of the chlorine ions are thought to not be contained in the alkali water because the alkali water is created in the cathodic chamber with an electrolysis process. In other words, the chlorine ion can be mostly removed by its migration from a cathodic chamber to an anodic chamber. Moreover, the alkali water also contains a large amount of hydroxide ion. The alkali water indicated relatively good corrosion resistance compared to the city water and the city water exhibited a local corrosion pattern due to the chlorine ion created by a high-degree purification treatment. In contrast, the alkali water showed a general corrosion pattern. Consequently, alkali water can be used with cooling water to inhibit local corrosion by chlorine ions in domestic boilers, various heat exchangers and the engine of ships and for structural steel in a marine structure.

A Study on Evalution of Corrosion Properties in cooling tube of water cooling transformers (수냉식변압기 냉각튜브의 부식특성 평가에 관한 연구)

  • Jeong, Nyeon-Ho;Min, Byung-Yeon;Park, Hyun-Joo
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.216-222
    • /
    • 2010
  • Most of the thirteen substations in operation in the metropolitan area were installed around the year 2000, and since water cooling methods are used to directly withdraw heat from transformer oils, a stable supply of electric power is required through optimal maintenance of facilities. The water cooling tower installed outdoors, which uses the water supply as sprinkler water, experiences the most problems. Since more than 90% of the cooling water is reused, the dissolved composition in the water becomes concentrated due to long operating hours, and impurities dissolve in the water due to air flowing in from the outside, forming hard scales on the outer surface of the cooling tube, and in extreme cases, reacting with the tube material composition, leading to corrosion. As a result, not only is cooling efficiency lowered, but in extreme cases the cooling tube must be replaced. In this study, the characteristics and composition of the scales formed on the cooling tube were analyzed and corrosion characteristics of material types were identified in order to find an efficient maintenance method for cooling tubes. In addition, the degree of dissolution of various chemicals were investigated during the removal of scales that have been formed.

Analysis of Degradation Behavior of Structural Steels Depending on Environment (환경에 따른 구조용 강의 열화거동 분석)

  • Lee Chang-Soon;Park In-Gyu;Kim Yong-Ki;Chang Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.171-176
    • /
    • 2004
  • Electro chemical corrosion tests were conducted on two structural steels, SS400 and SM490A, in various solutions with different pH values, All materials showed typical active corrosion behaviors in the solutions, and corrosion potential and current density were measured from the slopes obtained from the Tafel curves using linear polarization method. Corrosion potential increased in the acidic region and then decreased depending on the pH values of the solutions. All materials showed the fast corrosion rate in artificial acid rain(pH=4.7), but the slower corrosion rate was observed in NaOH solution(pH=12.0) for SS400 and in distilled water(pH=7.0) for SM490A, respectively, which is thought to come from the difference in chemical composition of two alloys. Generally homogeneous corrosion occurred in acid rain condition, and almost no corrosion was observed in distilled water in both alloys. NaOH solution produced more corrosion than distilled water, and more corrosion had progressed in SS400 than in SM490A in $3.5\%$ NaCl solution.

  • PDF

Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products (철부식생성물 저감을 위한 고온 pH(t) 상향 연구)

  • Shin, Dong-Man;Hur, Nam-Yong;Kim, Wang-Bae
    • Corrosion Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.175-179
    • /
    • 2011
  • The transportation and deposition of iron corrosion products are important elements that affect both the steam generator (SG) integrity and secondary system in pressurized water reactor (PWR) nuclear power plants. Most of iron corrosion products are generated on carbon steel materials due to flow accelerated corrosion (FAC). The several parameters like water chemistry, temperature, hydrodynamic, and steel composition affect FAC. It is well established that the at-temperature pH of the deaerated water system has a first order effect on the FAC rate of carbon steels through nuclear industry researches. In order to reduce transportation and deposition of iron corrosion products, increasing pH(t) tests were applied on secondary system of A, B units. Increasing pH(t) successfully reduced flow accelerated corrosion. The effect of increasing pH(t) to inhibit FAC was identified through the experiment and pH(t) evaluation in this paper.

An Electrochemical Method to Predict Corrosion Rates in Soils

  • Dafter, M.R
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.217-225
    • /
    • 2016
  • Linear polarization resistance (LPR) testing of soils has been used extensively by a number of water utilities across Australia for many years now to determine the condition of buried ferrous water mains. The LPR test itself is a relatively simple, inexpensive test that serves as a substitute for actual exhumation and physical inspection of buried water mains to determine corrosion losses. LPR testing results (and the corresponding pit depth estimates) in combination with proprietary pipe failure algorithms can provideauseful predictive tool in determiningthe current and future conditions of an asset. Anumber of LPR tests have been developed on soil by various researchers over the years1), but few have gained widespread commercial use, partly due to the difficulty in replicating the results. This author developed an electrochemical cell that was suitable for LPR soil testing and utilized this cell to test a series of soil samples obtained through an extensive program of field exhumations. The objective of this testing was to examine the relationship between short-term electrochemical testing and long-term in-situ corrosion of buried water mains, utilizing an LPR test that could be robustly replicated. Forty-one soil samples and related corrosion data were obtained from ad hoc condition assessments of buried water mains located throughout the Hunter region of New South Wales, Australia. Each sample was subjected to the electrochemical test developed by the author, and the resulting polarization data were compared with long-term pitting data obtained from each water main. The results of this testing program enabled the author to undertake a comprehensive review of the LPR technique as it is applied to soils and to examine whether correlations can be made between LPR testing results and long-term field corrosion.

Evaluation of Corrosion Protective System for Reinforced Concrete Structures Constructed With Sea Sand (해사 혼입된 콘크리트 구조물의 부식도 평가)

  • 김웅희;홍기섭;오승모;장지원;최응규;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.203-209
    • /
    • 1997
  • An experimental study to evaluate to evaluate corrosion protection systems was undertaken with 44 reinforced concrete slab specimens subjected to cyclic wet and dry saltwater exposure. Corrosion measurements included monitoring macrocell corrosion currents, which are genrerally accecpted in United States practice. Test results indicate that specimens containing 2 kg/$\textrm{m}^3$ of NaCl and exposed to wet(outdoor) and dry(indoor) conditions but not to saltwater show very low values of corrosion measurements regardless applying any corrosion protective systems. Corrosion currents of the specimens exposed at 10 percent of NaCl were higher than that of the specimen exposed at 5 percent of NaCl, so the density of the salt water had an influential effect on the test. For the specimens with water repellent membrane currents kept relatively low numerical values, but test specimens with surface corrosion inhibitor protective system showed high values of corrosion current. It would be expected that evaluation of the corrosion protective systems need long-term measurement.

  • PDF

Investigated Selection Method of Electric Corrosion for Corrosion Prevention of Water Pipe Line (송수관로 부식방지를 위한 전기방식 선정 방법 고찰)

  • Lee, Eun-Chun;Shin, Gang-Wook;Hong, Sung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.358-360
    • /
    • 2000
  • Measurement and analysis for earth resistivity and grounding resistance of Jeon-Ju's widearea-waterworks water pipe line. This result propose to improvement method for exactness analyze the causes for lack of corrosion voltage.

  • PDF

Development of Method for In-situ Micro-Scale Observation of Stress Corrosion Cracking in High-Temperature Primary Water Environment (원전 고온 1차수 환경에서 응력부식균열의 실시간 마이크로 스케일 관찰 방법 개발)

  • Jung-Ho Shin;Jong-Yeon Lee;Sung-Woo Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.265-272
    • /
    • 2023
  • The aim of this study was to develop a new in-situ observation method and instrument in micro-scale to investigate the mechanism of stress corrosion cracking (SCC) initiation of Ni-base alloys in a high temperature water environment of pressurized water reactors (PWRs). A laser confocal microscope (LCM), an autoclave with diamond window view port, and a slow strain-rate tester with primary water circulation loop system were components of the instrument. Diamond window, one of the core components of the instrument, was selected based on its optical, chemical, and mechanical properties. LCM was used to observe the specimen in micro-scale, considering the experimental condition of a high-temperature primary water environment. Using in-situ method and instrument, it is possible to observe oxidation and deformation of specimen surface in micro-scale through the diamond window in a high-temperature primary water in real-time. The in-situ method and instrument developed in this work can be utilized to investigate effects of various factors on SCC initiation in a high-temperature water environment.