Acknowledgement
본 연구는 한국연구재단을 통해 과기부 연구개발사업(2021M2E4A1037979, RS-2022-00143718)의 지원을 받아 수행되었다.
References
- D. Feron, R. W. Staehle, Stress Corrosion Cracking of Nickel Based Alloys in Water-cooled Nuclear Reactors: The Coriou Effect, 1st ed., pp. 3 - 24, Woodhead Publishing (2016).
- P. L. Andresen, P. W. Emigh, D. F. Taylor, and J. Hickling, Detection of SCC initiation in BWR environment by electrochemical noise. In 8th Interntaional Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Sawston Cambridge (1998).
- Z. Zhai, M. B. Toloczko, M. J. Olszta, and S. M. Bruemmer, Stress corrosion crack initiation of alloy 600 in PWR primary water, Corrosion Science, 123, 76, (2017). Doi: https://doi.org/10.1016/j.corsci.2017.04.013
- D. B. Song, S. W. Kim, S. S. Hwang, D. J. Kim, and C. H. Lee, In situ investigation of intergranular stress corrosion cracking initiation and coalescence and effects of geometric and microstructural characteristics, Corrosion, 74, 1385, (2018). Doi: https://doi.org/10.5006/2872
- G. W. Jeon, S. W. Kim, D. J. Kim, and C. Y. Jeong, New test method for real-time measurement of SCC initiation of thin disk specimen in high-temperature primary water environment, Nuclear Engineering and Technology, 54, 4481 (2022). Doi: https://doi.org/10.1016/j.net.2022.07.025
- T. Y. Kim, S. W. Kim, D. J. Kim, and S. T. Kim, Finite Element Analysis of Stress and Strain Distribution on Thin Disk Specimen for SCC Initiation Test in High Temperature and Pressure Environment, Corrosion Science and Technology, 22, 44, (2023). Doi: https://doi.org/10.1016/j.net.2022.07.025
- J. Nakano, T. Kohya, S. Endo, H. Ugachi, H. Tsuji, and T. Tsukada, SSRT facility for in-situ observation of irradiated materials in high temperature water (2003). https://www.osti.gov/etdeweb/biblio/20469999
- T. Fukumura, N. Nakajima, N. Totsuka, and M. Okada, Development of an autoclave with zirconia windows for in-situ observation of sample surface under the primary water conditions of pressurized water reactors, Journal of nuclear science and technology, 39, 276, (2002). Doi: https://doi.org/10.1080/18811248.2002.9715186
- J. H. Kim, and I. S. Hwang, Development of an in situ Raman spectroscopic system for surface oxide films on metals and alloys in high temperature water, Nuclear Engineering and Design, 235, 1029, (2005). Doi: https://doi.org/10.1016/j.nucengdes.2004.12.002
- R. M. Pope, and E. S. Fry, Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements, Applied optics, 36, 8710 (1997). Doi: https://doi.org/10.1364/AO.36.008710
- Diamond Materials GmbH Inc. https://www.diamond-materials.com/en/cvd-diamond/optical/
- C. A. Klein, and G. F. Cardinale, Young's modulus and Poisson's ratio of CVD diamond, Diamond and Related Materials, 2, 918, (1993). Doi: https://doi.org/10.1016/0925-9635(93)90250-6
- Esco Optics Inc. https://escooptics.com/blogs/news/pressure-window-design
- M. Dhondt, I. Aubert, N. Saintier, and J. M. Olive, Characterization of intergranular stress corrosion cracking behavior of a FSW Al-Cu-Li 2050 nugget, Mechanics & Industry, 16, 401 (2015). Doi: https://doi.org/10.1051/meca/2015012