• Title/Summary/Keyword: water control

Search Result 12,102, Processing Time 0.04 seconds

Technology of selective absorber coatings on solar collectors using black chromium+3 sulfate acid on substrates (흑색 황산3가크롬을 이용한 태양열 흡열판 선택흡수막 도금기술)

  • Ohm, Tae-In;Yeo, Woon-Tack;Kim, Dong-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.27-35
    • /
    • 2013
  • One of the most important factors that have a large influence on performance of the solar water heater system is performance of the solar collector, more detailedly, coating technology on the surface of the solar collector, which can provide high solar absorptance and low emittance. The core of the coating technology is to coat solar selective surfaces. In this study, various performance experiments are carried out using $Cr_2(SO_4)_3{\cdot}15H_2O$ coating technology. Here, IGBT(Insulated Gate Bipolar Transistor) of 5000A-15V was used as the surface processing rectifier which can stably output power and also can control voltage and current. The plating solution mainly contains black chrome$^{+3}$ concentration, H-y Conductivity, N-u Complex, NF Additive and NC-2 Wetter. Before applying the black chrome coating on the copper plate, optimal conditions are provided by using various preprocessing methods such as removal of fat, activation, electrolytic polishing, nickel strike, copper sulfate plating and bright neckel plating, and then the automatic continuous coating experiment are performed according to plating time and cathode current density. In the experiment, after the removal of fat, chemical polishing, nickel strike and activation processes as the preprocessing methods, the black chrome coating was performed in a plate solution temperature of $28^{\circ}C$ and a cathode current density of $18A/cm^2$ for 90 seconds. The thickness of chrome and nickel on the coated plate is $0.389{\mu}m$, $159{\mu}m$ respectively. As a result of the coating experiment, it showed the most excellent performance having a high solar absorptance of 98% and a low emittance of $5{\pm}1%$ when the black chrome surface had a thickness of $0.398{\mu}m$.

Polymerization and Effect of Organic/Organic Core Shell Binder (Organic/organic Core Shell 바인더의 중합과 처리영향)

  • Sim, Dong-Hyun;Ban, Ji-Eun;Kim, Min-Sung;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.470-477
    • /
    • 2008
  • Core shell binder of organic/organic pair that has two different properties within a particle were prepared by a step emulsion polymerization of methacrylate (MMA), styrene (St), ethyl acrylate (EA), butyl acrylate (BA), and 2-HEMA by using an water soluble initiator(APS) in the presence of an anionic surfactant (SDBS). Unwoven tensile strength of the core shell binder after processing and measuring the PSt/PMMA/2-HEM core shell with the binder is a value represents the highest was $10.75\;kg_f$/2.5cm, elongation measurements PEA/PBA core shell binder showed the highest value was 120.00%. In conclusion, using the core shell binders were able to control the mechanical properties such as tensile strength and elongation.

Isolation and Characterization of Plant Growth Promoting Rhizobacteria from Waste Mushroom bed from Agaricus bisporus (양송이 수확 후 배지로부터 식물생장촉진세균의 분리 및 생육특성)

  • Jung, Young-Pil;Kyung, Ki-Cheon;Jang, Kab-Yeul;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.866-871
    • /
    • 2011
  • An auxin-producing bacteria (3YN11-02) was isolated from waste mushroom bed from Agaricus bisporus of Chungnam Buyeo-Gun area. The strain 3YN11-02 was identified as a novel species belongs to Rahnella aquatica by a chemotaxanomic and phylogenetic nalysis. The isolate was confirmed to produce indole-3-acetic acid (IAA) which is one of auxin hormone by TLC and HPLC analysis. When the concentration of IAA was assessed by performing HPLC quantity analysis, the maximal $290mg\;L^{-1}$ of IAA detected in ether fraction extracted from the culture filtrate which was cultured in R2A broth containing 0.1% tryptophan for 24 h at $35^{\circ}C$. The molecular weight of the main peak obtained by LC-mass analysis was correspondent well to 175, that of IAA. To investigate the growth promoting effect of crop, when the culture broth of R. aquatica 3YN11-02 was infected onto water culture and seed pot of mung bean, the adventitious root induction and root growth of mung bean were 2.0 times higher than control.

Development of SATEEC R Module using Daily Rainfall Data (일강우를 고려한 SATEEC R모듈 개발)

  • Jang, Chun-Hwa;Ryu, Ji-Chul;Kang, Hyun-Woo;Kum, Dong-Hyuk;Kim, Young-Sug;Park, Hwa-Yong;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.983-990
    • /
    • 2011
  • Universal Soil Loss Equation (USLE) has been used to estimate potential long-term soil erosion in the fields. However, the USLE does not estimate sediment yield due to lack of module considering sediment delivery ratio (SDR) for watershed application. For that reason, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) system was developed and applied to compute the sediment yield at watershed scale. However, the R factor of current SATEEC Ver. 2.1 was estimated based on 5-day antecedent rainfall, it is not related with fundamental concept of R factor. To compute R factor accurately, the energy of rainfall strikes should be considered. In this study, the R module in the SATEEC system was enhanced using formulas of Williams, Foster, Cooley, CREAMS which could consider the energy of rainfall strikes. The enhanced SATEEC system ver. 2.2 was applied to the Imha watershed and monthly sediment yield was estimated. As a result of this study, the $R^2$ and NSE values are 0.591 and 0.573 for calibration period, and 0.927 and 0.911 for validation period, respectively. The results demonstrate the enhanced SATEEC System estimates the sediment yield suitably, and it could be used to establish the detailed environmental policy standard using USLE input dataset at watershed scale.

Survival, Growth and Physiological Response of the Juvenile Hybrid Grouper (Epinephleus akaara♀×E. lanceolatus♂) Exposed to Different Water Salinity Levels (대왕붉바리 치어(Epinephleus akaara♀×E. lanceolatus♂)의 생존, 성장 및 생리학적 반응에 미치는 염분의 영향)

  • Shin, Yun Kyung;Choi, Young Jae;Gil, Hyun Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.426-433
    • /
    • 2021
  • This study aimed to determine the appropriate salinity condition for optimal cultivation of the juvenile hybrid grouper Epinephleus akaara♀×E. lanceolatus♂ in conditions of decreasing salinity. The survival, growth, metabolic rate, stress, and histological response were investigated in juvenile hybrid grouper exposed to different salinities for 30 days. At 0 psu, the survival rate of the juvenile hybrid grouper was 60% on the 2nd day of exposure and all individuals died on the 3rd day of exposure. At salinities above 3 psu, all animals survived throughout the exposure period. Growth rate for body weight of the juvenile hybrid grouper was the highest in the control and the lowest at 10 psu. Plasma osmolality of the juvenile hybrid grouper exposed to different salinities was 313-355 mg Osmol/kg at salinities above 10 psu, and then decreased to 225-264 mg Osmol/kg at salinities below 5 psu. The oxygen consumption rate tended to decrease as the salinity decreased. Stress responses of the juvenile hybrid grouper were analyzed with decreasing salinity. Therefore, it is considered that a salinity of more than 20 psu is suitable for the culture of the juvenile hybrid grouper.

Artificial neural network for predicting nuclear power plant dynamic behaviors

  • El-Sefy, M.;Yosri, A.;El-Dakhakhni, W.;Nagasaki, S.;Wiebe, L.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3275-3285
    • /
    • 2021
  • A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.

Effect on Eel Anguilla japonica and Crop Growth by the Development of a Biofloc Technology (BFT) Aquaponic System (바이오플락 기반 아쿠아포닉스 시스템 개발에 의한 뱀장어(Anguilla japonica)와 재배작물의 성장에 미치는 영향)

  • Hwang, Ju-Ae;Lee, Jeong-Ho;Park, Jun Seong;Choe, Jong Ryeol;Lee, Donggil;Kim, Hyeongsu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.418-425
    • /
    • 2021
  • The effects of an aquaponic system based on biofloc technology (BFT-AP) were analyzed for eel Anguilla japonica as aquaculture species and caipira Lactuca sativa as the cultivated crops. The rate of weight gain rate by the eels was 178% (BFT-AP 200 head) > 136% (BFT-AP 100 head) > 100% (BFT). The eel body weight in the BFT-AP (200 head) significantly increased when compared to the BFT only eel group (P<0.05). The weight of the upper layer of caipira was 91±8.5 g (200 head) > 90±8.9 g (100 head) > 48±8.3 g (Hydroponic crop, HP). The crop growth in all BFT-AP groups was higher than the control, the hydroponic group. The total ammonia nitrogen (TAN) and NO2--N concentrations decreased in the BFT-AP group when compared to the BFT group. It was possible to remove nitric acid from the aquaponics system and reuse it as eel rearing water. Although some nutrient concentrations were low in BFT when compared to HP, the nutrient concentration was sufficient for plant growth. The results show that BFT has the potentially to provide a sustainable aquaponic system.

Verification and validation of isotope inventory prediction for back-end cycle management using two-step method

  • Jang, Jaerim;Ebiwonjumi, Bamidele;Kim, Wonkyeong;Cherezov, Alexey;Park, Jinsu;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2104-2125
    • /
    • 2021
  • This paper presents the verification and validation (V&V) of a calculation module for isotope inventory prediction to control the back-end cycle of spent nuclear fuel (SNF). The calculation method presented herein was implemented in a two-step code system of a lattice code STREAM and a nodal diffusion code RAST-K. STREAM generates a cross section and provides the number density information using branch/history depletion branch calculations, whereas RAST-K supplies the power history and three history indices (boron concentration, moderator temperature, and fuel temperature). As its primary feature, this method can directly consider three-dimensional core simulation conditions using history indices of the operating conditions. Therefore, this method reduces the computation time by avoiding a recalculation of the fuel depletion. The module for isotope inventory calculates the number densities using the Lagrange interpolation method and power history correction factors, which are applied to correct the effects of the decay and fission products generated at different power levels. To assess the reliability of the developed code system for back-end cycle analysis, validation study was performed with 58 measured samples of pressurized water reactor (PWR) SNF, and code-to-code comparison was conducted with STREAM-SNF, HELIOS-1.6 and SCALE 5.1. The V&V results presented that the developed code system can provide reasonable results with comparable confidence intervals. As a result, this paper successfully demonstrates that the isotope inventory prediction code system can be used for spent nuclear fuel analysis.

Developing a Virus-Binding Bacterium Expressing Mx Protein on the Bacterial Surface to Prevent Grouper Nervous Necrosis Virus Infection

  • Lin, Chia-Hua;Chen, Jun-Jie;Cheng, Chiu-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1088-1097
    • /
    • 2021
  • Grouper nervous necrosis virus (GNNV) infection causes mass grouper mortality, leading to substantial economic loss in Taiwan. Traditional methods of controlling GNNV infections involve the challenge of controlling disinfectant doses; low doses are ineffective, whereas high doses may cause environmental damage. Identifying potential methods to safely control GNNV infection to prevent viral outbreaks is essential. We engineered a virus-binding bacterium expressing a myxovirus resistance (Mx) protein on its surface for GNNV removal from phosphate-buffered saline (PBS), thus increasing the survival of grouper fin (GF-1) cells. We fused the grouper Mx protein (which recognizes and binds to the coat protein of GNNV) to the C-terminus of outer membrane lipoprotein A (lpp-Mx) and to the N-terminus of a bacterial autotransporter adhesin (Mx-AIDA); these constructs were expressed on the surfaces of Escherichia coli BL21 (BL21/lpp-Mx and BL21/Mx-AIDA). We examined bacterial surface expression capacity and GNNV binding activity through enzyme-linked immunosorbent assay; we also evaluated the GNNV removal efficacy of the bacteria and viral cytotoxicity after bacterial adsorption treatment. Although both constructs were successfully expressed, only BL21/lpp-Mx exhibited GNNV binding activity; BL21/lpp-Mx cells removed GNNV and protected GF-1 cells from GNNV infection more efficiently. Moreover, salinity affected the GNNV removal efficacy of BL21/lpp-Mx. Thus, our GNNV-binding bacterium is an efficient microparticle for removing GNNV from 10‰ brackish water and for preventing GNNV infection in groupers.

The Effects of Baekho-tang Extracts on Regulating Th2 Differentiation through Improving Skin Fat Barrier Damage (백호탕 추출물의 지방장벽 손상 개선을 통한 상피 내 Th2 분화 조절 효과)

  • Ahn, Sang Hyun;Kim, Ki Bong;Jeong, Aram
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.35 no.4
    • /
    • pp.156-166
    • /
    • 2021
  • Objectives The purpose of this study is to confirm the regulate effect of T helper (Th) 2 differentiation that Baekho-tang extract may produce to improves skin lipid barrier damages. Methods Four-weeks-old NC/Nga mice were divided into four groups: control group (Ctrl, n=10), lipid barrier eliminated group (LBE, n=10), Dexamethasone treatment after lipid barrier elimination group (DxT, n=10), and Baekho-tang extract treatment group after lipid barrier elimination group (BHTT, n=10). Baeko-tang extract was administered for 3 days after removal of the skin fat barrier in BHTT group. Then, we identified changes in external symptoms of the skin, factors affecting skin barrier such as potential of hydrogen (pH), filaggrin (FLG), transepidermal water loss (TEWL) and Th2 differentiation factors like Interleukin (IL)-4, Kallikrein Related Peptidase 7 (KLK7) and protease activated receptor 2 (PAR-2) through our immunohistochemistry. Results After lipid barrier elimination, the reduction of morphological skin inflammations was less in BHTT group than in LBE group and DxT group. Also, pH and TEWL were significantly decreased with BHTT group. However, FLG was significantly increased in BHTT group compared to LBE, DxT, and Ctrl group. All kinds of Th2 differentiation factors (IL-4, KLK7 and PAR-2) were also decreased in BHTT compared to the LBE and DxT. Conclusions As a result of this study, BHT administration decreased pH, TEWL, and increased FLG, thus participating in recovering damaged skin barrier. Since Th2 differentiation factors were decreased as well, BHT's regulatory effect in sequential immune reactions may be a possible explanation of how it enhances recovery of the damaged lipid barrier.