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a b s t r a c t

A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors.
In order to control the plant operation under both normal and abnormal conditions, the different sys-
tems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually
monitored continuously, resulting in very large amounts of data. This situation makes it possible to
integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to pro-
vide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP
operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on
patterns in data, and they represent alternatives to physics-based models that typically require signifi-
cant computational resources and might not fully represent the actual operation conditions of an NPP. In
this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to
simulate the interaction between the reactor core and the primary and secondary coolant systems in a
pressurized water reactor. The transients used for model training included perturbations in reactivity,
steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Un-
certainties of the plant physical parameters and operating conditions were also incorporated in these
transients. Eight training functions were adopted during the training stage to develop the most efficient
network. The developed ANN model predictions were subsequently tested successfully considering
different new transients. Overall, through prompt prediction of NPP behavior under different transients,
the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency
response planning and risk mitigation strategies.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A nuclear power plant (NPP) is a complex system-of-systems
that contains highly dynamic, interconnected, and interdepen-
dent subsystems such as the reactor core and primary and sec-
ondary coolant systems. Each of these subsystems consists of
multiple critical components where malfunction of any has the
fy), ahmeda69@mcmaster.ca
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by Elsevier Korea LLC. This is an
potential to initiate an accident that can propagate throughout the
entire plant causing serious negative consequences. NPP safety and
performance are key concerns during the plant's service life that
require a sufficient understanding of the plant's nonlinear dynamic
behavior to control the reactor power, cool the fuel, and contain the
radioactivity. Lessons learnt from the Fukushima Daiichi nuclear
accident showed that the monitoring systems used were ineffec-
tive, leading to poor pre-accident operation and management [1].
Early warning systems are therefore essential as, in addition to
monitoring, they also include analysis abilities to accurately predict
the nonlinear dynamic behavior of components, subsystems, as
well as the entire system under normal and transient conditions
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[2]. A rapid early warning system can contribute to effective risk
mitigation strategies, based on complex considerations, to serve as
a valuable decision support system (DSS) for plant operators [3,4].

Decision-making within a complex dynamic environment can
be challenging, especially for highly interdependent and inter-
connected systems such as NPPs. As such, aside from physics-based
models, each NPP must adopt an intelligent and adaptive plant-
specific DSS to ensure the safety of the plant, environment, and
public. An intelligent DSS aims to collect, organize, and analyze
large amounts of data such that decision-makers can take informed
actions during emergency situations [5]. Intuitive interpretation of
such data is typically challenging, and more sophisticated tools are
thus necessary to predict the system response under different
operating conditions. Artificial intelligence (AI) provides faster and
more effective tools that can learn autonomously based on patterns
in data, and therefore have the potential to predict the behavior of
complex systems through intelligent DSSs [6,7].

Several data-driven models (DDMs) have been developed based
on AI, and have been rapidly progressing over the past few years
due to the complex nature of real-world systems, the flourishing of
database management [8], and the continuous development of
powerful machine learning algorithms [9]. DDMs utilize available
data for a specific system operation to obtain mathematical re-
lationships between the system state variables (i.e., inputs and
outputs), albeit with limited knowledge of the physical/mathe-
matical interdependence between such variables [10]. Learning
from data is the main feature of DDMs, where the mathematical
interdependence between the system inputs and outputs is
discovered iteratively through minimizing the deviation between
observed and estimated values [11]. Additionally, DDMs can be
applied to gain valuable insights from the system state variables in
an unsupervised fashion (i.e., cluster analysis). DDMs provide a
different concept to analyze challenging problems in science and
engineering [12], and have been widely applied to simulate the
dynamic behavior of different complex systems (e.g., trans-
portation, finance, management, climate, medicine, and environ-
ment) [10,13e16]. However, the application of AI-based DDMs in
the field of nuclear engineering is still limited and has been iden-
tified only recently as a critically important research area [17].

Several DDMs have been developed over the past decades,
including regression models, artificial neural networks, and cluster
analysis [e.g., 18e21], of which the artificial neural network (ANN)
shows superior efficiency in uncovering complex relationships
between system inputs and outputs [22,23]. In this respect, several
types of artificial neural network have been developed to date.
Examples include feed-forward backpropagation ANN [24], con-
volutional neural network (CNN) [25], and recurrent neural
network (RNN) [26] with its different types including long-short-
term memory (LSTM) networks. The feed-forward back-
propagation ANN is the simplest type of ANN and is typically used
when information is moving in one direction (i.e., inputs are used to
predict a set of outputs) [27]. CNN uses different topology to mainly
analyze visual datasets. RNN (and LSTM) is typically used when the
order dependence of a sequence is of interest. It should be
emphasized that CNN- and RNN-based models have more complex
structure than that of the feed-forward backpropagation ANN, and
are therefore suggested when the latter cannot capture the
behavior of the underlying system. As such, the feed-forward
backpropagation ANN is employed in the present study.

Training is the first stage in developing an ANN, and several
training algorithms have been developed, such as gradient descent
algorithms (GD), conjugate gradient algorithms (CG), and quasi-
Newton algorithms (QN) [e.g., 28e32]. Training an ANN is a chal-
lenging step because: i) a proper combination of learning, transfer,
and training functions is usually needed [33]; ii) different training
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algorithms result in different accuracy levels [34]; iii) training
performance depends on the range and amount of data employed
[35]; and, iv) overfitting may diminish model generalizability [36].
Once trained with enough and representative data, an ANN can be
used to predict the system response under new input values. ANNs
have been previously employed within the field of nuclear engi-
neering to predict NPP response under multiple core power inputs
and loss of flow accidents [17], to simulate the intermediate heat
exchanger of a nuclear reactor [20], to develop a plant-wide man-
agement plan (i.e., transient identification, plant-wide monitoring,
analysis of vibrations, monitoring of performance and efficiency)
[37], and to model the thermal dynamic behavior of a NPP [38].

Several previous studies [39e41] have utilized the fuel tem-
perature to estimate the probability of core damage. In addition,
fuel temperature and steam pressure are the primary controllers of
the reactor core and secondary coolant systems’ integrity. Thus,
having a model to estimate the temporal fuel temperature and
steam pressure is key for effective early warning. In this respect, the
present study aims at developing an intelligent DSS based on DDM
to predict the critical state variables in a pressurized water reactor
(PWR). This includes predicting the reactor fuel temperature and
steam pressure in the PWR under four different transients (a
change of reactivity, a change of steam valve coefficient, a change of
reactor core inlet temperature, and a change of steam generator
inlet temperature) considering uncertainty in physical parameters
and system operating conditions. Each of the considered transients
is represented through eight different severity levels. A feed-
forward backpropagation ANN is developed based on data ob-
tained from a previously developed system dynamics (SD) model of
a PWR, including uncertainties in the physical parameters and
plant operating conditions. Three algorithms (GD, CG, QN), repre-
sented by eight training functions, are tested during the training
stage, and the best function is identified based on the network
performance. The developed ANN model serves as a rapid early
warning system and intelligent DSS that can enable the develop-
ment of quick and proper risk mitigation strategies under chal-
lenging and dynamically changing operating conditions.

2. Dataset

A SD model has been previously developed by El-sefy et al. [42]
to simulate the nonlinear dynamic behavior of a PWR. The devel-
oped SD model represents a single loop reactor in which the
feedback mechanisms between the reactor core, the secondary
coolant system, the primary coolant system, and the plenums are
simulated based on the mathematical descriptions employed in
previous studies [43e48]. The nominal values of PWR system pa-
rameters are adopted from those of the Palo Verde NPP. Un-
certainties associated with the system physical parameters (e.g.,
the specific heat of primary coolant, heat transfer coefficient from
fuel to coolant, coolant temperature coefficient of reactivity) and
operating conditions (e.g., primary coolant mass flow rate of inside
the core, steam flow rate) were also considered in the SD model.
Such uncertainties were represented in terms of probability dis-
tributions similar to those employed in previous studies [49e55]. A
normal distribution was assumed for 26 parameters, while the
other seven parameters were assumed to follow uniform distri-
butions. A schematic diagram of the PWR generating unit, including
the feedback loops between the SD representations of the reactor
core and secondary coolant system, is shown in Fig. 1. The reader is
referred to El-Sefy et al. [42,56] for detailed descriptions of the SD
model employed in the present study.

In order to develop an ANN-based predictive model, input-
output observation pairs are required. Such information can be
obtained from a monitoring system at the plant site or from a



Fig. 1. Schematic diagram of a typical PWR [41].
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validated physics- or data-driven model. As such, a previously
developed and validated SD model [42] is utilized herein to
generate the necessary data to train, validate and test the ANN
model due to the lack of actual observations. The developed SD
model was utilized to obtain synthetic, dynamic data correspond-
ing to different transients. Four transients were considered, each of
which was represented by eight different levels of severity, as
summarized in Table 1. A total of 32 different transients were
simulated, and the corresponding SD model outputs (i.e., reactor
core reactivity (r), reactor core thermal power (Pth), reactor core
inlet temperature (TIP), steam generator inlet temperature (TLP),
steam valve coefficient (cl), fuel temperature (Tf), and steam pres-
sure (Ps)) were monitored and recorded continuously. The SD
model was embedded within a Monte-Carlo framework, where
5000 realizations were employed for each transient in order to
consider the impact of uncertain physical parameters and operating
conditions. The outputs of the SD model were subsequently
employed for the development of a corresponding ANN to inves-
tigate if the latter can reproduce the same results, albeit faster as a
result of no longer needing to analyze the complex physics-based
interactions within the NPP systems.

The reactor core reactivity, reactor core thermal power, reactor
core inlet temperature, steam generator inlet temperature, and
steam valve coefficient were selected as the ANN inputs, while the
fuel temperature Tf and the steam pressure Ps were selected as the
outputs because Tf provides an indication for the probability of core
damage and Ps controls the secondary coolant system integrity.
Each of the ANN inputs/outputs was represented by a time series
over a time frame of 80 seconds. Eleven realizations corresponding
to the minimum and maximum values of Tf and Ps together with
those corresponding to each decile (i.e., 10th to 90th percentile
Table 1
Different transients employed in the present study.

Transient description

Transient 1: Changing the reactivity
Transient 2: Changing the steam generator-steam valve coefficient
Transient 3: Changing the reactor core inlet temperature
Transient 4: Changing the steam generator inlet temperature
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range) were used to represent each transient, and were subse-
quently employed for the development of the ANN. Fig. 2 shows a
portion of the SD dataset utilized for the development of the ANN. A
total of 57,024 (32 Transients x 11 realizations x 2 outputs x 81
time-steps) samples were thus adopted for the development of the
ANN using the neural network (NN) toolbox in MATLAB [57]. The
total number of samples was randomly divided into 70% training
(representing 39,916 samples), 15% validation (representing 8554
samples), and 15% testing (representing 8554 samples) subsets. The
training subset was used to build the ANN through adjusting the
network parameters. The validation subset was used within the
training process to prevent overfitting, while the testing subset was
utilized to test the trained network performance under data not
employed for training [58]. It is important to note that, the ANN
aims to capture the nonlinear relationship between the input and
output data based on the randomly selected training data regard-
less of the size of the time series data. A long event with long time
series data can be treated similar to a small event by randomly
selecting the training, testing and validation subsets. In addition,
long time series data provides larger training data points, which
enhances the ability of the ANN-based model to capture more
patterns in the dataset.
3. Artificial neural network

3.1. Network architecture

ANN is one of the most popular DDM tools that depends on the
concept of learning to replicate the behavior of complex dynamic
systems [59]. ANN was inspired by biological neural systems (e.g.,
the human brain) that can learn to perform tasks through exposure
Max. Min. Increment

�0.006 þ0.006 0.0015
�20% þ20% 5%
�20 �F þ20 �F 5 �F
�20 �F þ20 �F 5 �F



Fig. 2. (a) Sample of SD estimates of Tf due to reactivity transient of þ0.0015, and (b) sample of SD estimates of Ps at the same transient level.

Fig. 3. Schematic diagram of the feed forward back propagation neural network with
single hidden layer.
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to different examples without being constrained to task-specific
rules. Therefore, ANNs present an alternative to complex mathe-
matical/physics models without prior knowledge of the underlying
processes. In addition, ANNs typically show excellent prediction
capabilities when appropriately trained. Due to their capability to
simulate nonlinear behaviors, approximate input-output relation-
ships, and recognize patterns within a reasonable amount of time,
ANNs have been exhibiting an explosion of application to different
research areas [60].

The feed-forward ANN (hereafter referred to simply as ANN)
was employed in the present study, and a detailed description of it
is provided herein. An ANN typically consists of three main com-
ponents: the input layer, the hidden layer, and the output layer
(Fig. 3). The input and output layers consist of a group of nodes,
each of which corresponds to an input or output. The hidden layer
contains a collection of artificial neurons that are interconnected to
the input nodes. The links between input nodes and hidden layer
neurons represent the flow of data between the two layers, where
weights are assigned to represent the amount of information
shared. A hidden layer is followed by an activation function (e.g.,
step function, ramp function, or sigmoid function) in order to limit
the amplitude of a neuron output [61]. Bias is also introduced when
the activation function is applied such that the hidden layer output
matches the actual output. In general, in an ANN, biased weighted
inputs are passed to an activation function to capture the behavior
of complex systems [59]. The ANN output(s) can be represented
mathematically as:

O¼ f ðXWþ bÞ (1)

where O, X, W, and b represent the outputs, inputs, weights, and
bias in matrix notation, respectively. The function f in Equation [1]
represents the activation function, where the sigmoid function was
utilized in the present study as follows:

f ðzÞ¼ 1
1þ e�z (2)

where z is an arbitrary input variable. The weights and bias (i.e., W
and b) are adjusted iteratively through a backpropagation algo-
rithm such that the network output O matches the actual output
(P). This is referred to as the training process, as the ANN param-
eters (i.e., W and b) are adjusted to fit the relationships inherited
within the data. In this study, a backpropagation algorithm was
applied using different functions (referred to as training functions),
and the mean squared error (MSE) was utilized to evaluate the
performance of corresponding networks. It is noteworthy that a
more complex ANNwith multiple hidden layers may be used when
highly nonlinear behavior cannot be captured through simple
network architecture (e.g., an ANN with a single hidden layer). A
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mathematical formula, similar to Equation [1], can then be applied
to estimate the network output (i.e., O).

One of the key challenges in the design of ANN is determining
the number of hidden layers and their neurons. Increasing the
number of hidden layers can significantly increase the computa-
tional time required for both model training and usage. However,
based on previous studies [62,63], the use of a single hidden layer
has been proven to be efficient in approximating continuous
nonlinear functions according to the Universal Approximation
theorem. Although multiple hidden layers might be essential when
the underlying system behavior is highly complex and cannot be
captured through a single hidden layer, increasing the number of
hidden layers may cause overfitting problems, which limits the
generalizability of the corresponding ANN predictions. In this
respect, the present study employed an ANN with a single hidden
layer containing nh neurons (Fig. 4) to predict the nonlinear
response of a PWR. Identifying the number of hidden layer neurons
is crucial as small nh values disable the neural network from
capturing the relationship between the inputs and outputs (i.e., the
model can neither fit the training data nor be generalized) whereas
large nh values may lead to the problem of overfitting [64]. Over-
fitting occurs when the results from an ANN cannot be generalized
(i.e., the ANN's accuracy is constrained to predicting the training
data only) [36]. In the present study, nh is determined based on the
number of inputs, ni, according to Kalmogorov's theorem [65]:

nh �2ni þ 1 (3)

3.2. Training algorithms

As mentioned before, different functions may be used for
training an ANN. In general, the most appropriate function is that



Fig. 4. Schematic Diagram of ANN employed in the present study to simulate the dynamic behavior of a PWR.
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enables the network to simulate the underlying system behavior
(i.e., Tf and Ps of a PWR in the context of the present study) for the
training subset of the available data within a reasonable amount of
time and with a minimum MSE. Gradient descent, conjugate
gradient, and quasi-Newton are optimization algorithms used to
train ANN-based models. Such algorithms, among other exist (e.g.,
Newtonmethod, genetic algorithms, one-step secant method) have
been proven to be highly efficient in training an ANN, andwere thus
used in the present study. Each of these algorithms can employ
multiple functions for training. Three algorithms with eight
training functions were assessed in this study (listed in Table 2),
including: i) the GD algorithm (traingd, traingdm, and trainrp); ii)
the CG algorithm (trainscg, traincgp, and traincgf); and iii) the QN
Table 2
Results of the PWR-NN for different training functions.

Algorithm Training
function

Description nh

Gradient
Descent

traingd Gradient descent back propagation
traingdm Gradient descent with momentum back propagation
trainrp Resilient back propagation 4

8
11

Conjugate
Gradient

trainscg Scaled conjugate gradient back propagation 4
8
11

traincgp Conjugate gradient back propagation with Polak-
Ribi�ere updates

4
8
11

traincgf Conjugate gradient back propagation with Fletcher-
Reeves updates

4
8
11

Quasi-
Newton

trainbfg Broyden-Fletcher-Goldfarb- Shanno (BFGS) quasi-
Newton back propagation

4
8
11

trainlm Levenberg-Marquardt back propagation 4
8
11
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algorithm (trainbfg, and trainlm). GD is the most widely applied
training algorithm that adjusts W and b based on the descending
gradient direction of the function [33]. The GD algorithm typically
shows a fast-initial convergence rate but a slow zigzagging
behavior when approaching the final solution [66]. Although the
convergence of the GD algorithm is in the steepest descent direc-
tion, this may not necessarily produce the fastest convergence. The
CG algorithm is, in contrast, performed along the conjugate direc-
tion, which generally provides a faster convergence rate than the
steepest descent direction [67]. The QN algorithm relies on defining
a better search direction based on the Hessian matrixdrepresent-
ing the second derivatives of the error function at the current
values of the weights and biases [30]. An approximated version of
Average
number of
epochs

R (Tf) R (Ps) MSE (Tf)
oF2

MSE (Ps)
psi2

CPU time
(s)

did not converge
did not converge

879 0.9854 0.9985 201 22 11
894 0.9886 0.9989 157 16 13
904 0.9893 0.9991 147 14 15
276 0.9844 0.9990 215 15 6
303 0.9876 0.9991 171 13 8
301 0.9881 0.9991 164 13 9
270 0.9843 0.9991 217 14 12
294 0.9874 0.9992 174 12 15
332 0.9884 0.9992 159 12 21
264 0.9851 0.9991 206 13 12
389 0.9892 0.9994 150 9 20
431 0.9900 0.9994 138 8 28
1000 0.9797 0.9949 279 77 65
1000 0.9777 0.9926 306 112 78
1000 0.9783 0.9937 298 95 95
265 0.9904 0.9995 132 7 17
250 0.9934 0.9996 91 5 22
336 0.9940 0.9997 83 4 38
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the Hessianmatrix is adoptedwithin the QN algorithm to overcome
the complexity and the large memory size that typically results
from computing the exact one [68]. Although the convergence of
the QN algorithm is typically faster than that of the CG algorithm,
the latter is simpler and easier to apply [35]. In this study, all
training functions were applied considering the different nh values
in order to obtain the best ANN architecture that resulted in the
highest correlation coefficient (R) and lowestMSE between O and P
during the training stage.
4. Results and discussion

4.1. Network training, testing and validation

The dataset obtained from the SDmodel of the PWR systemwas
divided into three portions (training, validation, testing), as dis-
cussed earlier. The training and validation portions were used
together for training purposes (i.e., obtaining the optimum values
forW and b in Equation [1]). For training, the following parameters
were fixed for all training functions within the MATLAB-NN
toolbox: i) the performance function ¼ MSE; ii) the performance
goal¼ 0; iii) the adaptation learning function¼ LEARNGDM; iv) the
learning rate parameter ¼ 0.1; v) the activation function ¼ TANSIG;
and vi) the number of training iterations (max_epochs) ¼ 1000. In
addition, numerical measures haven been defined to assess the
performance of each training function. Such measures includeMSE,
the Central Processing Unit (CPU) time elapsed at the end of the
training, the number of epochs at the end of the training, and the
average regression value (R) over the training, validation, and
testing subsets. The ANN was trained with each training function
until theMSE remained constant for six consecutive epochs, except
with the training function trainbfg, which reached the maximum of
1000 epochs first. As retraining the network typically results in
different values of W and b, the training stage was repeated 100
times using the same dataset. Table 2 shows the average training
measures for each of the different ANNs that result from combining
the different training functions with the different nh values.

The training functions traingd and traingdm could not converge
and therefore the corresponding ANNs were eliminated in this
study. On the other hand, the ANNs corresponding to the rest of the
Fig. 5. MSE values under the trainlm training function and over the different training
iterations.
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training functions (i.e., trainrp, trainscg, traincgp, traincgf, trainbfg,
and trainlm) were all adequately trained, but with differences in the
CPU time consumed for training and the MSE values. The training
function trainlm (a QN training algorithm) with eleven neurons
showed the best performance in terms of the lowest MSE (Table 2),
and the corresponding ANN is referred to as the developed ANN.

Fig. 5 shows the MSE between the estimated and actual outputs
under the trainlm training function. Large averageMSE values were
encountered during the first few iterations (<20) and subsequently
decreased to smaller values. The results of the training stage
demonstrate the ability of the developed ANN to successfully learn
from the SD model-based dataset despite the complex dynamic
behavior of the underlying PWR system and highlight the potential
to use the developed ANN to predict the system response under
new transients (i.e., new input values). Fig. 6 shows the relationship
between the ANN estimated values and the SD actual outputs for
the training, validation, and testing subsets when the trainlm
training functionwas adoptedwith nh equals to eleven. In Fig. 6, the
symbol “Y” on the vertical axis represents the output from the
developed ANN model, while the symbol “T” on the horizontal axis
represents the target value that was estimated from the SD model.
The line of best fit through the data for all three subsets (i.e.,
training, validation, and testing) has nearly a unit slope and zero
intercept, reflecting the ability of the developed ANN to replicate
the SD model outputs.

4.2. Additional network testing

After training, it is crucial to test the developed ANN to ensure
its efficacy to predict the response of the PWR system under new
transients. Therefore, the SD model was employed to simulate the
PWR behavior under new transients, and the corresponding out-
puts were used for additionally testing the developed ANN. These
new transients were: 1) a perturbation in reactivity byþ0.001; 2) a
perturbation in reactivity by þ0.001 including uncertainties in the
system physical parameters and operating conditions; 3) a
perturbation in steam valve coefficient by þ7.5%; 4) a deviation in
steam valve coefficient by þ7.5% including uncertainties in the
system physical parameters and operating conditions; and, 5) a
perturbation in core inlet temperature by þ7.5 �F.

4.2.1. Transient 1: Increase in reactivity
In Transient 1, the performance of the developed ANN was

evaluated under an increase of reactivity by þ0.001. Increasing the
reactivity level leads to a higher fuel temperature, which subse-
quently causes more heat energy to transfer to the primary cooling
system. Such heat then transfers to the secondary coolant system
through the metal U tubes and converts the secondary coolant into
steam. As a result, additional steam is produced in the steam gen-
erators, leading to a higher steam pressure if there is no change in
the steam valve opening. The developed ANN sufficiently repro-
duced the SD model estimates of fuel temperature and steam
pressure under Transient 1, as shown in Fig. 7a and 7b, respectively.
The developed ANN underestimated the fuel temperature at the
beginning of the transient (t ¼ 0 s) by merely 1.6%, and the de-
viations between the ANN and SD model estimates of fuel tem-
perature decreased significantly as the reactor approached steady-
state conditions. On the other hand, the developed ANN efficiently
replicated the temporally changing steam pressure values esti-
mated by the SD model with negligible deviations.

4.2.2. Transient 2: Increase in reactivity with other parameter
uncertainties

Several sources of uncertainty are typically present in complex
systems (e.g., uncertainty in input parameters, uncertainty in



Fig. 6. Regression values of the ANN with 11 hidden layer neurons under the trainlm training function for the: (a) training subset, (b) validation subset, (c) testing subset, and (d) all
subsets combined together.

M. El-Sefy, A. Yosri, W. El-Dakhakhni et al. Nuclear Engineering and Technology 53 (2021) 3275e3285
model structure). Integrating the uncertainty of the input param-
eters in the developed ANN is therefore essential to reflect the real
behavior inside the underlying PWR. The effect of the uncertain
physical parameters and operating condition on the system
response were considered during the additional testing of the
developed ANN. A total of 5000 realizations of the SD model pa-
rameters were generated, and the corresponding outputs were
estimated under a reactivity change ofþ0.001. The ANN inputs (i.e.,
r, Pth, TIP, TLP, cl) were extracted from the SD model outputs, and
Fig. 7. (a) Comparison between NN prediction and SD estimate of fuel temperature due to a
prediction and SD estimate of steam pressure at the same transient level.
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were used to evaluate the uncertainty in predicting the temporal
fuel temperature and steam pressure. The temporal minimum,
median, and maximum fuel temperature and steam pressure were
predicted, as shown in Fig. 8a and 8b, respectively. The considered
uncertainty led to an increase in the fuel temperature and steam
pressure by 1.2% and 1.6%, respectively, compared to the median
value under steady state conditions. The developed ANN produced
similar results to those of the SD model with negligible differences.
In addition, the statistical distributions of fuel temperature and
n increase in reactivity level by þ0.001 (Transient 1), and (b) comparison between NN



Fig. 8. (a) Comparison between NN predictions and SD estimates of uncertain fuel temperature due an increase in reactivity level by þ0.001 (Transient 2), and (b) comparison
between NN predictions and SD estimates of uncertain steam pressure at the same transient level.

Fig. 9. (a) Comparison between NN prediction and SD estimate of fuel temperature due to an increase in steam valve coefficient byþ7.5% (Transient 3), and (b) comparison between
NN prediction and SD estimate of steam pressure at the same transient level.
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steam pressure predicted using the developed ANN do not follow a
uniform distribution but can rather be approximated by a 3-
parameter lognormal distribution, where the maximum and min-
imum responses have a lower probability of occurrence compared
to the mean response. These statistical distributions are similar to
those estimated using the SD model.

4.2.3. Transient 3: Increase in steam valve coefficient
The developed ANN was also tested under an increase in the

steam valve coefficient (corresponding to increasing the steam
valve opening) by þ7.5%. The steam pressure inside the steam
Fig. 10. (a) Comparison between NN predictions and SD estimates of uncertain fuel temp
comparison between NN predictions and SD estimates of uncertain steam pressure at the s
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generator decreases immediately after increasing the steam valve
opening. This is followed by a reduction in the reactor core inlet
temperature, which causes a positive reactivity and a subsequent
increase in the fuel temperature, as shown in Fig. 9a. As a result,
more heat energy is generated inside the reactor core to accom-
modate the reduction in steam pressure. The developed ANN suf-
ficiently simulated this physical behavior and reproduced the SD
model outputs under this transient, with maximum differences of
0.14% and 1.16% in the fuel temperature (t ¼ 80 s) and the steam
pressure (t ¼ 0 s), respectively (Fig. 9a and 9b).
erature due to an increase in steam valve coefficient by þ7.5% (Transient 4), and (b)
ame transient level.



Fig. 11. (a) Comparison between NN prediction and SD estimate of fuel temperature due to an increase in the reactor core inlet temperature by þ7.5 �F (Transient 5), and (b)
comparison between NN prediction and SD estimate of steam pressure at the same transient level.
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4.2.4. Transient 4: Increase in steam valve coefficient with other
parameters uncertainties

In Transient 4, the developed ANN was tested under an increase
in the steam valve coefficient by þ7.5% considering uncertain
physical parameters and operating conditions. Similar to Transient
2, a total of 5000 realizations were utilized as the inputs for the
developed ANN and the corresponding temporal fuel temperature
and steam pressure uncertainty were evaluated. The SD model
estimates were efficiently reproduced using the developed ANN,
with maximum differences of 0.162% and 0.137% in the minimum
andmaximum fuel temperature at t¼ 80 s, respectively, and 1.145%
in the steam pressure at t ¼ 0 s (Fig. 10). In addition, the statistical
distribution of the ANN predictions under steady state conditions
can be approximated by a 3-parameter lognormal distribution
(Fig. 10a and 10b).

4.2.5. Transient 5: Increase in reactor Inlet temperature
Finally, the performance of the developed ANN was evaluated

under an increase in the reactor core inlet temperature of 7.5 �F.
Increasing the coolant temperature results in a negative reactivity
feedback that reduces the fuel temperature, as shown in Fig.11a. On
the other hand, more heat energy is transferred to the secondary
coolant system due to the increasing coolant temperature in the
primary coolant system. In addition, the secondary coolant is
converted into steam, leading to a higher steam pressure. The SD
model outputs were adequately predicted using the developed
ANN under this transient, with maximum difference of 1.0% in the
fuel temperature at t ¼ 1 s and negligible deviations in the steam
pressure as shown in Fig. 11a and 11b, respectively.

4.2.6. Overall evaluation of the developed artifical neural network
It is important to note that other data drivenmodels can be used

to predict the response of the different subsystems in NPPs; how-
ever, the present study employed ANN due to the latter's demon-
strated efficacy in predicting more than one critical parameter
simultaneously [20,22,23,37,38,59]. It should thus be emphasized
that the ANN developed in the present study focused on replicating
the response of PWR only as a proof-of-concept demonstration,
rather than showing the limit to DDM applications in other types of
reactor systems per se. Additionally, the obtained results demon-
strated the ability of the developed ANNmodel to successfully learn
from the dataset despite the complex and dynamic nature of the
PWR system. Therefore, other ANN architectures (i.e., CNN, RNN)
were not utilized in the present study.

The main advantage of using data driven modelling is the ability
to capture the input-output relationships without overburdening
the model with the physical processes in the underlying system.
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This fact leads DDMs to be essentially black boxes, where the re-
sults may not be interpreted physically. However, training, vali-
dating, and testing DDMs using actual data (that can be interpreted
either based on physics or based on operator's experience) enable
such models to be used in lieu of physics-based ones in some sit-
uations. It should be noted that integrating data-driven and
physics-based models can also be used to enhance the physical
interpretability of the DDM results. As such, hybrid modelsd inte-
grating data-driven and physics-based models can present the best
option to develop physics-guided intelligent decision support tools
to mitigate risks of rarer event scenarios. In such type of models,
ANN can be trained under plant operational data, experience
database, and data from rare event simulations to consider for
example plant ageing with time, operational transients, and rare
events in predicting the plant behavior. Such hybrid models can
therefore be key for NPP operators and managers to take rapid and
reliable actions under abnormal conditions.

Overall, the developed ANN has been trained under 32 different
transients to simulate the dynamic interaction between complex
systems inside the PWR. The ANN performance under Transients 1
through 5 supports its ability to predict PWR physical behaviors
similar to a SD modeling approach, but with a lower computational
cost and time. It should be noted that the analysis time including
Monte-Carlo simulation by SD model is approximately 15e20 min
compared to only a few seconds in case of using the ANN model
(Table 2), which supports the use of the ANN model as a rapid
decision support tool in lieu of physics-based models. The value of
minimizing the simulation time is especially apparent when
considering the complexities associated with analyzing a full NPP
as a system-of-systems and the need for rapid decision making in
the case of an imminent accident. Additionally, the developed ANN
model has sufficiently replicated the response of two reactor crit-
ical parameters simultaneously. Other critical parameters (e.g.,
coolant flow in the primary heat transport system, turbine inlet
steam pressure) can also be predicted when the corresponding
observations become available to train the ANN. Finally, the
developed ANN can be used to provide the plant operators with
early warnings under the considered transients. This can reduce the
likelihood of having severe accident consequences and ultimately
enhance the overall safety conditions.
5. Conclusions

The present study aimed at exploring the potential of applying
AI tools within the nuclear engineering field, and specifically for the
prediction of NPP behavior. A previously published validated SD
(physics-based) model was employed to generate data pertaining
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to a reactor's dynamic behavior under different transients. The data
was subsequently utilized to develop a corresponding ANN (data-
driven)model. The uncertainty associatedwith the reactor system's
physical parameters and operating conditions were also incorpo-
rated in these transient analyses. A feed-forward backpropagation
ANN was trained based on 32 transients to model the interaction
between complex systems inside the PWR, including the reactor
core, primary and secondary cooling systems, hot and cold legs,
reactor core inlet and outlet plenums, and steam generator inlet
and outlet plenums. The ANN was developed with an input layer
with five nodes, a single hidden layer with different numbers of
neurons, and an output layer with two nodes. Three back-
propagation algorithms with eight training functions were utilized
during the model training stage. The ANN corresponding to the
trainlm function, with eleven neurons in the hidden layer, showed
the best performance compared to other training functions.

The developed ANN was subsequently tested under new tran-
sients representing perturbations in reactivity, steam valve coeffi-
cient, and core inlet temperature. In all cases, the developed ANN
reproduced the SD model estimates of the temporal fuel temper-
ature and steam pressure with negligible differences (no more than
1.6%). In addition, the predicted statistical distributions of fuel
temperature and steam pressure using ANN are compatible with
the corresponding distributions from the SD simulation model
when input uncertainties are considered. In an actual NPP, the
developed ANN would provide a computationally efficient alter-
native compared to physics-based simulators, especially for
considering the uncertain system physical parameters and opera-
tion conditions. In addition, the developed ANN can be utilized as
an early warning tool to enable the development of effective risk
mitigation strategies under unexpected operating conditions and
can therefore serve as a rapid decision support system for NPP
operators and emergency managers. Moving forward, the devel-
oped ANN can be trained using real plant operation data and
different transients in different systems to cover all possible sce-
narios that can occur during normal or abnormal operating con-
ditions. The adoption and development of AI tools within the
nuclear engineering field will enable major breakthroughs in
mitigating the risk of accidents and human errors when dealing
with complex, dynamic and critical systems such as NPPs. AI also
has the potential of autonomously controlling and manage NPP
including for example small modular reactors (SMR), both on-site
and remotely. It is also expected that the next generations of NPP
will include additional intelligent safety systems that enable more
accurate and timely control of the plant, especially as SMR tech-
nology become mainstream.
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