• Title/Summary/Keyword: water compartment

Search Result 128, Processing Time 0.028 seconds

A Research on Thermal Properties & Fire Resistance of A Water Film Covered Glazing System for Large Atrium Space (대규모 아트리움에 적용되는 수박형성 유리벽의 열적 특성 및 내화성능에 관한 연구)

  • 박형주;지남용
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.38-55
    • /
    • 1999
  • In order practically to use fire-defective glazing materials for the compartment wall where a fire-protection rating is mandated, there have been many trials internationally, This research focuses on a feasibility that, if certain water film covered all surface of glass, the glazing system can endure without breaking out under the compartment fire. First of all, a water film spray system was specially designed to wet the entire surface of the glass and also to have tiny small amount of water rebounded from the surface after emitted from nozzles. After this system has proven to have perfect performance, small-scale tests were done to find out if the water film covered glazing system react to the high temperature curve in a small furnace room. Finally, on basis of the obtained data, full-scale experiments were done so that water-film covered glazing system can pass the Korean Standard (KS) test for fire resistance, KS F2257.

  • PDF

Development of Pressure Correction System for Surface Vessel to Ensure Reliability of Compartment Test Result (수상함 격실기밀시험 결과의 신뢰성 확보를 위한 압력 보정 시스템 개발)

  • Min, Il-Hong;Kim, Jun-Woo;Son, Gi-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.409-414
    • /
    • 2021
  • Tightness performance that blocks compartments is important for surface ships to achieve superior mission performance and survivability in combat environments. To meet the above requirements, airtightness of the structural elements and the appropriate strength to specific areas are checked during a test run after ship construction. In particular, air tests of compartments adjacent to the water surface are performed. In an air test, air is injected into the compartment up to the test pressure of the test memo. The pressure drop value is checked after 10 minutes to determine if the requirements of the corresponding area are satisfied. In summer, however, when the influence of the outside temperature is large, a phenomenon in which the internal pressure increases during the air test was identified. This phenomenon reduces the reliability of the test result. Therefore, a system was designed to compensate for temperature changes in the compartments through this study. The developed system calculates the amount of pressure change caused by a temperature change in the compartment and outputs a correction value. The pressure change was calculated using the ideal gas equation, reflecting the maintenance, increase, and decrease in temperature during the test process. A comparison of the calculated pressure correction value with the database of NIST REFPROP revealed a difference of 0.126% to a maximum of 0.253%.

Comparison of Electricity Generation Efficiencies depending on the Reactor Configurations in Microbial Fuel Cells (미생물 연료 전지의 반응조 형상에 따른 전기 생산효율 비교)

  • Lee, Yunhee;Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.681-686
    • /
    • 2010
  • Two different MFC designs were evaluated in batch mode: single compartment combined membrane-electrodes (SCME) design and twin-compartment brush-type anode electrodes (TBE) design (single chamber with two air cathodes and brush anodes at each side of the reactor). In SCME MFC, carbon anode and cathode electrodes were assembled with a proton exchange membrane (PEM). TBE MFC was consisted of brush-type anode and carbon cloth cathode electrodes without the PEM. A brush-type anode was fabricated with carbon fibers and was placed close to the cathode electrode to reduce the internal resistance. Substrates used in this study were glucose, leachate from cattle manure, or sucrose at different concentrations with phosphate buffer solution (PBS) of 200 mM to increase the conductivity thereby reduce the internal resistance. Hydrogen generating bacteria (HGB) were only inoculated in TBE MFC. The peak power densities ($P_{peak}$) produced from the SCME systems fed with glucose and leachate were 18.8 and $28.7mW/m^2$ at external loads of 1000 ohms, respectively. And the $P_{peak}$ produced from TBE MFC were 40.1 and $18.3mW/m^2$ at sucrose concentration of 5 g/L and external loads of 470 ohms, with a mediator (2-hydroxy-1, 4-naphthoquinone) and without the mediator, respectively. The maximum power density ($P_{max}$) produced from mediator present TBE MFC was $115.3mW/m^2$ at 47 ohms of an external resistor.

Production of Sulfuric Acid and Ammonia Water from Ammonium Sulfate Using Electrodialysis with Bipolar Membrane and Ammonia Stripping

  • Yeon Kyeong-Ho;Song Jung-Hoon;Shim Bong-Sup;Moon Seung-Hyeon
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.28-33
    • /
    • 2005
  • The feasibility of producing sulfuric acid and ammonia water from ammonium sulfate was investigated by an integrated process including ammonia stripping (AS) and electrodialysis with bipolar membrane (EDBM). It was suggested that the production of sulfuric acid using ammonia stripping-electrodialysis with bipolar membrane (ASEDBM) was effective in obtaining high concentration of sulfuric acid compared with EDBM alone. AS was carried out over pH 11 and within the range of temperatures, $20^{\circ}C{\~}60^{\circ}C$. Sodium sulfate obtained using AS was used as the feed solution of EDBM. The recovery of ammonia increased from $40\%$ to $80\%$ at $60^{\circ}C$ due to the increased mobility of ammonium ion. A pilot-scale EDBM system, which is composed of two compartments and 10 cell pairs with an effective membrane area of $200 cm^2$ per cell, was used for the recovery of sulfuric acid. The performance was examined in the range of 0.1 M${\~}$1.0 M concentration of concentrate compartment and of $25 mA/cm^2{\~}62.5 mA/cm^2$ of current density. The maximum current efficiency of $64.9\%$ was obtained at 0.1 M sulfuric acid because the diffusion rate at the anion exchange membrane decreased as the sulfuric acid of the concentrate compartment decreased. It was possible to obtain the 2.5 M of sulfuric acid in the $62.5 mA/cm^2$ with a power consumption of 13.0 kWh/ton, while the concentration of sulfuric acid was proportional to the current density below the limiting current density (LCD). Thus, the integrating process of AS-EDBM enables to recover sulfuric acid from the wastewaters containing ammonium sulfate.

Evaluation Model and Experimental Validation of Tritium in Agricultural Plant (농작물의 삼중수소 오염평가 모델 개발 및 실험검증)

  • Kang Hee Suk;Keum Dong-kwon;Lee Hansoo;In Jun;Choi Yong Ho;Lee Chang Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.319-328
    • /
    • 2005
  • This paper describes a compartment dynamic model for evaluating the contamination level of kritium in agricultural plants exposed by accidentally released tritium. The present model uses a time-dependent growth equation of plant so that it can predict the effect of growth stage of plant during the exposure time. The model including atmosphere, soil and plant compartments is described by a set of nonlinear ordinary differential equations, and is able to predict time-dependent concentrations of tritium in the compartments. To validate the model, a series of exposure experiments of HTO vapor on Chinese cabbage and radish was carried out at the different growth stage of each plant. At the end of exposure, the tissue free water(TFWT) and the organically bound tritium(OBT) were measured. The measured concentrations were agreed well with model predictions.

  • PDF

Drying Efficiency of Betung Bamboo Strips (Dendrocalamus asper) Based on Different Solar Drying Oven Designs

  • Ihak SUMARDI;Anggit Kusuma Dewan DARU;Alfi RUMIDATUL;Rudi DUNGANI;Yoyo SUHAYA;Neil PRIHANTO;Rudi HARTONO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Betung bamboo (Dendrocalamus asper) is used as a building and handicraft material in Indonesia; however, bamboo needs to be dried to increase its stability. This study aimed to evaluate the efficiency of drying bamboo using solar energy and different drying oven designs. The betung bamboo pieces were dried using a direct solar dryer (direct drying) and an indirect solar dryer (indirect drying) and then the decrease in levels that occurred based on the relative humidity (RH) and temperature values achieved in the two dryers were compared. The highest average temperature in the direct indirect drying oven compartment was 60.1 ± 13.1℃ with 19.9 ± 16.4% RH and 60.2 ± 11.9℃ with 19.5 ± 15.5% RH, respectively. The drying defect in indirect drying was lower than that in direct drying, and indirect drying had a 61.7% greater average water loss than direct drying with significant difference (95%, analysis of variance) based on water loss/compartment volume parameters. Thus, the solar drying oven can be used to air-dry bamboo (14%) for 7 d from an initial moisture content of 70%-80% in bamboo strips. The results of this research can be used for small-scale bamboo processing industries that have limited use of electrical energy with quite good results.

Investigation of Dynamic Characteristics of the Flooding Water of the Damaged Compartment of an ITTC RoRo-Passenger (ITTC RoRo-Passenger 손상부위 침수유동 특성에 관한 연구)

  • Cho Seok-Kyu;Hong Sa-Young;Kim Yoon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.451-459
    • /
    • 2006
  • When a ship is damaged and flooded, the motion of the damaged ship is significantly influenced by the flooding water dynamics. The flooding water in the damaged ship has been treated as a lumped mass under the quasi-static assumption in most of previous researches. To calculate the motion of damaged ship rigorously, it is necessary to analyze the coupled dynamics of flooding water. In this study, a series of numerical and experimental studies is conducted for the damaged part of ITTC RORO passenger. FLOW3D is used for investigating the feasibility of the state of the art CFD technique. An applicability of the coupled motion analysis of damaged ships can be confirmed by agreement between the numerical results and the model experiments. A CFD technique is considered for the numerical modeling of the dynamics of flooding water.

Control Modelling and Controllability Evaluation of Liquid Zone Control System (액체영역제어계통의 제어모델링 및 제어성 평가)

  • Lee, Kwang-Dae;Yang, Seung-Ok;Oh, Eung-Se
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.641-643
    • /
    • 2004
  • Liquid Zone Control System controls the power of heavy water reactor. Changing the level of each zone compartment regulates one local zone power of 14 zone powers, iud the level is limited less than 90% by the control algorithm to prevent the flood. In recent years, the level and the power was controlled oscillatory in the upper zones. To find out the condition of cycling, the zone control system was modelled with the linear difference equations and identified using parameter estimation. The pole-zero plot showed that the major pole was near the stability boundary, and the system had oscillatory characteristics in nature.

  • PDF

A Study on the Ozoflotation Process for Drinking Water Treatment (Ozoflotation 공정의 정수처리 적용에 관한 연구)

  • Kang, Tae Hee;Oh, Byung Soo;Lee, Hoon;Byun, Kyu Sik;Kwon, Soon Buhm;Sohn, Byeong Yong;Ahn, Hyo Won;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.528-534
    • /
    • 2005
  • Ozone, a powerful oxidant, is widely used to remove microorganisms, pesticides, taste and odor compounds effectively. Dissolved air flotation (OAF) has been known as an economical process for treating algae and low turbid water quality. An ozoflotation system, combining ozone and OAF processes, has a merit which can operate the ozonation and flotation process simultaneously in a single compartment. This study investigated the application of the ozoflotation process for advanced water treatment by carrying out the pilot-plant experiment. During the test, ozone microbubbles were generated through a OAF pump and many kinds of parameters were evaluated under several conditions, such as raw water flow rate and ozone dose. As a result of the test, the optimum operating conditions of ozoflotation were decided to be 1.2 mg/L ozone dose and about 34 minute Hydraulic retention time (HRT). Finally, it could be demonstrated that the ozoflotation system can effectively improve the drinking water quality.

Improvement of Cathode Reaction of a Mediatorless Microbial Fuel Cell

  • Pham, The-Hai;Jang, Jae-Kyung;Chang, In-Seop;Kim, Byung-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.324-329
    • /
    • 2004
  • Oxygen diffuses through the cation-specific membrane, reducing the coulomb yield of the fuel cell. In the present study, attempts were made to enhance current generation from the fuel cell by lowering the oxygen diffusion, including the uses of ferricyanide as a cathode mediator and of a platinum-coated graphite electrode. Ferricyanide did not act as a mediator as expected, but as an oxidant in the cathode compartment of the microbial fuel cell. The microbial fuel cell with platinum-coated graphite cathode generated a maximum current 3-4 times higher than the control fuel cell with graphite cathode, and the critical oxygen concentration of the former was 2.0 mg $1^{-1}$, whilst that of the latter was 6.6 mg $1^{-1}$. Based on these results, it was concluded that inexpensive electrodes are adequate for the construction of an economically feasible microbial fuel cell with better performance as a novel wastewater treatment process.