Abstract
The feasibility of producing sulfuric acid and ammonia water from ammonium sulfate was investigated by an integrated process including ammonia stripping (AS) and electrodialysis with bipolar membrane (EDBM). It was suggested that the production of sulfuric acid using ammonia stripping-electrodialysis with bipolar membrane (ASEDBM) was effective in obtaining high concentration of sulfuric acid compared with EDBM alone. AS was carried out over pH 11 and within the range of temperatures, $20^{\circ}C{\~}60^{\circ}C$. Sodium sulfate obtained using AS was used as the feed solution of EDBM. The recovery of ammonia increased from $40\%$ to $80\%$ at $60^{\circ}C$ due to the increased mobility of ammonium ion. A pilot-scale EDBM system, which is composed of two compartments and 10 cell pairs with an effective membrane area of $200 cm^2$ per cell, was used for the recovery of sulfuric acid. The performance was examined in the range of 0.1 M${\~}$1.0 M concentration of concentrate compartment and of $25 mA/cm^2{\~}62.5 mA/cm^2$ of current density. The maximum current efficiency of $64.9\%$ was obtained at 0.1 M sulfuric acid because the diffusion rate at the anion exchange membrane decreased as the sulfuric acid of the concentrate compartment decreased. It was possible to obtain the 2.5 M of sulfuric acid in the $62.5 mA/cm^2$ with a power consumption of 13.0 kWh/ton, while the concentration of sulfuric acid was proportional to the current density below the limiting current density (LCD). Thus, the integrating process of AS-EDBM enables to recover sulfuric acid from the wastewaters containing ammonium sulfate.