• Title/Summary/Keyword: waste-water

Search Result 2,949, Processing Time 0.027 seconds

Water-Environment-Economic nexus analysis of household food waste impacts: A case study of Korean households

  • Adelodun, Bashir;Cho, Gun Ho;Kim, Sang Hyun;Odey, Golden;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.148-149
    • /
    • 2021
  • Food waste has increasingly become a global issue of concern among the researchers and policymakers due to its significant environmental and economic impacts, and other associated unsustainable use of resources, including water resources. While food wastage occurs at each stage of the supply chain with food loss at the upstream and food waste at the downstream, the impacts of food waste occurring at the consumption side are enormous due to the accumulated added values. In this study, the embedded water resources, greenhouse gas emissions, and economic loss of household food waste were investigated. The primary granular data of household food waste was collected through direct sampling from 218 selected households of the Buk-gu community in Daegu, South Korea from July 2019 to May 2020. The water footprint, which was based on the water footprint concept, i.e., indirect water use, and GHG emission potential factor for each of the food items were adopted from the literature, while the retail prices and disposal cost were used to assess the economic cost of wasted food items. The water footprint, GHG emission associated with environmental impacts, and the economic cost of 42 major identified wasted food items were conducted. The findings showed that an average of 0.73 ± 0.06 kg/household/day edible food waste was generated among the sampled households, with leafy vegetable, watermelon, and rice responsible for 10, 9, and 4%, respectively, of the total weight of the 42 food wasted items. The water footprint and environmental impact of the household food waste resulted in 0.46 ± 0.04 m3 and 0.71±0.05 kg CO2eq, respectively. Beef, pork, poultry, and rice accounted for 52, 9, 5, and 4% of the total water footprint, while beef, pork, rice, tofu/cheese had 52, 8, 6, and 6% of the total emissions, respectively, embedded in the food wasted. Furthermore, the average estimated economic cost associated with wasted food items was 3855.93±527.27 Korean won, with beef, fish, and leafy vegetable responsible for 21, 13, and 10%, respectively, of the total economic cost. A combined assessment using water-environmental-economic nexus indicated that animal-based food had the highest footprint impacts, with beef, pork, and poultry indicating high indices of 0.3, 0.08, and 0.06 respectively, on a scale of 0 to 1, compared to corn and lettuce with lowest impacts of 0.02. Other food items had moderate impact values ranging from 0.03 to 0.05. This study, therefore, provides insight into the enormity of environmental and economic implications of household food waste among Korean households.

  • PDF

The Effects of Waste Leachate on the Eco-Physiological Characteristics of Populus euramericana

  • Woo, Su-Young
    • The Korean Journal of Ecology
    • /
    • v.22 no.6
    • /
    • pp.343-348
    • /
    • 1999
  • Populus euramericana has been identified as a possible species for use for phytoremediation of landfills. To identify the effects of waste leachate on the growth and physiological characteristics of Populus euramericana. four different treatments were applied to Populus euramericana seedlings: leachate solution (100% leachate). 25% dilution (75% leachate: 25% water. v/v), 50% dilution (50% leachate: 50% water. v/v) and control (100% tab water) were applied to Populus euramericana. Treatment with waste leachate significantly stimulated Populus euramericana height. diameter at root collar and biomass production relative to the water control. Chlorophyll contents. photosynthesis and transpiration of leachate irrigated-trees were significantly higher than those of water control. These results suggested that poplar could be a suitable species for phytoremediation in landfills because these species showed good growth performance and were capable of taking up waste leachate.

  • PDF

Effect of Waste Heat Recovery Condensing Boiler with Condensed Water Recirculation Function (응축수 순환이 폐열회수 응축형 보일러 성능에 미치는 영향)

  • Keum, Kuk Bin;Kim, Sooik;Yu, Byeong-Hun;Lee, Chang Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.201-204
    • /
    • 2015
  • Recently, energy excessive consumption and environmental pollution are the social issued. The most efficient way to solve both energy excessive consumption and environmental pollution is existing combustion system improved. This study was part of the assume and commercial used existing waste heat recovery condensing boiler to low emission performance for exhaust gas recirculation(EGR) and thermal efficiency rise by applying the condensed water recirculation(CWR) conducted. The researchers applied the EGR and CWR develop a new concept for the condensed water recirculation waste heat recovery condensing boiler. Waste heat recovery condensing boiler applied to the condensed water recirculation thermal efficiency of the same conditions was increased by about 4.8~5.5% and pollution emission also decreased.

  • PDF

Increase of treatment amount of thermophilic oxic process considering calorie/water (C/W) ratio (칼로리/수분 (C/W)비를 고려한 고온호기 처리법에서의 처리량 증가)

  • Jeon, Kyoung-Ho;Choi, Dong-Yoon;Song, Jun-Ik;Park, Kyu-Hyun;Kwag, Jung-Hoon;Kim, Jae-Hwan;Kang, Hee-Sul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2010
  • The signification of calorie/water (C/W) ratio was investigated in the treatment of highly concentrated organic wastes by thermophilic oxic process (TOP). Swine waste was used in this study. When C/W ratio was 1.6, most of swine waste was decomposed and all water was evaporated in the 24-h injection cycle. To improve treatment efficiency of TOP treating swine waste, the effect of shortening the swine waste injection cycle was examined. The shortening of injection cycle was conducted to stimulate the activity of thermophilic bacteria. A high temperature in the reactor was maintained by shortening of the injection cycle. When the swine waste injection cycle was shortened, the C/W ratio was fixed at 1.6. As a result, by shortening the swine waste injection cycle from 24-h to 12 and 6-h, the maximum loading rate of swine waste per day could be improved 1.9 and 3.5 times, respectively.

Development of power system and degradation technology using arc plasma for the degradation of non degradable waste water (플라즈마를 이용한 액상 폐기물 처리 전원장치 개발 및 분해 기술 개발)

  • Han, Chul-Woo;Kim, June-Sung;Park, Sang-Hoon;Hwang, Lee-Ho;Rhee, Byong-Ho;Kang, Duk-Won;Kim, Jin-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1900-1902
    • /
    • 2004
  • The degradation systems of non degradable waste water consist of the arc plasma torch, power supply, a feeder of liquid waste and reactors. Output of stable plasma torch, suitable air flux, microscopic atomizing state of waste water and long reaction section must be to degrade waste water more efficiently. In this paper, we are designed the stable power system, the microscopic atomizing state of waste water and the efficient reactors to satisfy various conditions. Non degradable wast water used in this work was $Na_2$EDTA of 1.0 mol. The concentration of $CO_2$ and EDTA was analyzed using GC (Gas Chromatography) and HPLC (High Performance Liquid Chromatography). In the result show that $CO_2$ concentration was about 96% and EDTA was degraded approximately 96%.

  • PDF

Features of Waste Water form By-Product Silk Treatment and Composition of Extracted Lipid (부잠폐수의 성상과 유출 유지의 성분)

  • 남영락;설대석
    • Journal of Sericultural and Entomological Science
    • /
    • v.33 no.2
    • /
    • pp.100-102
    • /
    • 1991
  • The features of waste water from by-product silk treatment of silk reeling process were investigated and the lipid extracted from waste water was analysed. The COD of waste water from by-product silk treatment was at the level of 605 mgO/$\ell$ Total Dissolved Solid Particles 2,335mg/$\ell$and Total Suspended Solid Particles 2,123mg/$\ell$. The lipid extracted from the waste water from by-product silk treatment was composed of triglyceride 76.8%, free fatty acids 12.5%, diglyceride 5.7% and free sterol 5.0%. In fatty acid composition of lipid, the content of loeic acid, linoleic and linolenic acid was 64.93%, whereas that of palmitic acid was 29.39% and stearic acid 4.93%.

  • PDF

Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water

  • Rashed, M. Nageeb;Gad, A.A.;AbdEldaiem, A.M.
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.53-71
    • /
    • 2018
  • Waste glass disposal causes environmental problems in the cities. To find a suitable green environmental solution for this problem low cost adsorbent in this study was prepared from waste glass. An effective new green adsorbent was synthesized by hydrothermal treatment of waste glass (WG), followed by acidic activation of its surface by HCl (WGP). The prepared adsorbent was characterized by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), and BET surface measurement. The developed adsorbent was used for the removal of heavy metals (Cd, Cu, Fe, Pb and Zn) from well water. Batch experiments were conducted to test the ability of the prepared adsorbent for the removal of Cd, Cu, Fe, Pb and Zn from well water. The experiments of the heavy metals adsorption by adsorbent (WGP) were performed at different metal ion concentrations, solution pH, adsorbent dosage and contact time. The Langmuir and Freundlich adsorption isotherms and kinetic models were used to verify the adsorption performance. The results indicated high removal efficiencies (99-100%) for all the studied heavy metals at pH 7 at constant contact time of 2 h. The data obtained from adsorption isotherms of metal ions at different time fitted well to linear form of the Langmuir sorption equation, and pseudo-second-order kinetic model. Application of the resulted conditions on well water demonstrated that the modified waste glass adsorbent successfully adsorbed heavy metals (Cd, Cu, Fe, Pb and Zn) from well water.

Effect of Carbonized Wastewoods on Purification of Wastewater (목질폐잔재 탄화물의 수질정화 효과)

  • Lee, Dong-Wook;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.34-39
    • /
    • 2002
  • This study examined the effect of carbonized wastewoods on purification of waste water. The purification ability of charcoals(lump-shaped, approximately 3×3×3 cm) maded by wood-based material for waste water from a kitchen and septic tank was superior to those of thinned wood. For lump-shaped charcoal, gaps between particles in particleboard, and gaps between fibers in MDF were much more effective than micropore in purification of waste water. After purification test, color of waste water from wood-based material charcoals were much more lighter than thinned wood charcoals. In addition, odors of waste water from both charcoals tended to be decreased.

Current Issues and Challenges Related to Water Quality of Nepal in Comparison with Korean Situation (한국의 상황과 비교한 네팔의 수질 관련 현재의 문제 및 향후 과제)

  • Bhandari, Pratibha;Kim, Dong S.
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Although Nepal is naturally bestowed with ample water resources, not all of the population has access to safe and clean drinking water. Waste water treatment is almost nonexistent. In the recent days the flow of population in the urban areas has increased the existing challenges of providing safe water and promoting sanitation. The prevalence of water borne diseases is high. This paper presents overview of issues like water pollution, arsenic contamination of drinking water, waste water treatment and effects of water contamination on public health. Comparison between waste water treatment regulations in South Korea and Nepal has also been made. Implementation strategies to tackle the existing water related problem for promoting public health is also recommended.

Model of Water, Energy and Waste Management for Development of Eco-Innovation Park ; A Case Study of Center for Research of Science and Technology "PUSPIPTEK," South Tangerang City, Indonesia

  • Setiawati, Sri;Alikodra, Hadi;Pramudya, Bambang;Dharmawan, Arya Hadi
    • World Technopolis Review
    • /
    • v.3 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • Center for Research of Science and Technology ("PUSPIPTEK") has 460 hectares land area, still maintained as a green area with more than 30% green space. There are 47 centers for research and testing technology, technology-based industries, and as well as public supporting facilities in PUSPIPTEK area. Based on the concepts developed to make this area as an ecological region, PUSPIPTEK can be seen as a model of eco-innovation. The purpose of this research is to develop a model of water, energy and waste management with eco-innovation concept. As a new approach in addressing environmental degradation and maintaining the sustainability of ecosystem, studies related to eco-innovation policy that combines the management of water, energy and waste in the region has not been done. In order to achieve the objectives of the research, a series of techniques for collecting data on PUSPIPTEK existing conditions will be carried out, which includes utilities data (water, electricity, sewage) and master plan of this area. The savings over the implementation of the concept of eco-innovation in water, energy, and waste management were calculated and analyzed using quatitative methods. The amount of cost savings and feasibility were then calculated. Eco innovation in water management among other innovations include the provision of alternative sources of water, overflow of rain water and water environments utilization, and use of gravity to replace the pumping function. Eco-innovation in energy management innovations include the use of LED and solar cell for air conditioning. Eco-innovation in waste management includes methods of composting for organic waste management. The research results: (1) The savings that can be achieved with the implementation of eco innovation in the water management is Rp. 3,032,640 daily, or Rp.1,106,913,600 annually; (2) The savings derived from the implementation of eco innovation through replacement of central AC to AC LiBr Solar Powered will be saved Rp.1,933,992,990 annually and the use of LED lights in the Public street lighting PUSPIPTEK saved Rp.163,454,433 annually; (3) Application of eco innovation in waste management will be able to raise awareness of the environment by sorting organic, inorganic and plastic waste. Composting and plastic waste obtained from the sale revenue of Rp. 44,016,000 per year; (4) Overall, implementation of the eco-innovation system in PUSPIPTEK area can saves Rp. 3,248,377,023 per year, compared to the existing system; and (5)The savings are obtained with implementation of eco-innovation is considered as income. Analysis of the feasibility of the implementation of eco-innovation in water, energy, and waste management in PUSPIPTEK give NPV at a 15% discount factor in Rp. 3,895,228,761; 23.20% of IRR and 4.48 years of PBP. Thus the model of eco-innovation in the area PUSPIPTEK is feasible to implement.